Chance constrained optimization of a three-stage launcher

Achille Sassi
ENSTA ParisTech, France

Jean-Baptiste Caillau
Université de Bourgogne, France

Max Cerf
Airbus Defence and Space, France

Emmanuel Trélat
Université Pierre et Marie Curie, France

Hasnaa Zidani
ENSTA ParisTech, France

Keywords: Stochastic optimization, density estimation, chance constraint

We are interested in optimizing the fuel load of a three-stage launcher which mission is to deliver a payload to a given altitude. Since some of the system’s parameters are subject to uncertainties, the aim is to guarantee the success of the mission with a 90% probability, taking into account those random variations.

A general formulation of our stochastic optimization problem would be

\[
\begin{align*}
\text{Calculate} & \quad \min_{x \in X} J(x) \\
\text{Subject to} & \quad P[G(x, \omega) \leq 0] \geq p
\end{align*}
\]

where \(x \in X \subseteq \mathbb{R}^n \) is the array of optimization variables, \(\omega \in \Omega \subseteq \mathbb{R}^n \) is an array of random variable with known distribution and \(0 \leq p \leq 1 \) represents the probability of success. Our approach consists in translating this stochastic optimization problem into a deterministic one by approximating the distribution of the constraint function \(G \) (which is a random variable, since it depends on \(\omega \)) via Kernel Density Estimation. Let \(s \) be a random variable with an unknown probability density function \(f \) that we want to estimate and let \(\{s_1, s_2, \ldots, s_n\} \) be a sample of size \(m \) from the variable \(s \). A Kernel Density Estimator for \(f \) is the function

\[
\hat{f}(x) := \frac{1}{m h} \sum_{i=1}^{m} K \left(\frac{x - s_i}{h} \right)
\]

where the function \(K \) is called kernel and the smoothing parameter \(h \) is called bandwidth. The approximation error between \(f \) and \(\hat{f} \) depends on the choice of both \(K \) and \(h \). Since the bandwidth plays a much more important role than the kernel (see [1]), in most applications the study is focused on the choice of \(h \). \(K \) is usually the Gaussian kernel.

References