A numerical method to solve generalized Euler equations.

Luca NENNA

I.N.R.I.A, France

Jean-David, BENAMOU
I.N.R.I.A, France

Guillaume, CARLIER
Université Paris-Dauphine, France
Mots-clefs : Optimization, Optimal Transport, Kullback-Leibler, Bregman, Alternate projections, Entropic Method, Fluid Dynamics, Euler equations

In this talk we present a numerical method to solve Brenier's variational models for incompressible Euler equations [1]. These models give rise to a relaxation in the space of measure-preserving plans of Arnold's interpretation in terms of geodesics. The relaxation of Euler equations proposed by Brenier can be understood as requiring the resolution of a multi-marginal transportation with an infinite number of marginals. When discretizing Brenier's problem with K steps in time, one thus faces the resolution of a K marginals OT problem:

$$
\begin{align*}
& \inf \int \sum_{i=1}^{K-1} \frac{1}{K}\left|x_{i+1}-x_{i}\right|^{2} d \gamma\left(x_{1}, \cdots, x_{K}\right) \tag{1}\\
& \text { s.t. } \quad \gamma \geq 0, \quad \int \gamma=1, \quad\left(e_{i}\right)_{\sharp} \gamma=\text { Leb, } i=1, \cdots, K \quad\left(e_{1}, e_{K}\right)_{\sharp} \gamma=\left(s_{\star}, s^{\star}\right)_{\sharp} L e b, \tag{2}
\end{align*}
$$

where the constraints $\left(e_{i}\right)_{\sharp} \gamma=L e b$ stand for the incompressibility of the fluid (Leb is the Lebesgue measure on $\left.[0,1]^{d}\right)$ and $\left(e_{1}, e_{K}\right)_{\sharp} \gamma=\left(s_{\star}, s^{\star}\right)_{\sharp} L e b$ expresses that moving fluid particles from the initial configuration s_{\star} (one usually has $s_{\star}=I d$) to the final one s^{\star} yields equivalent transport plans. We regularise problem (1) by adding an entropy term $\mathcal{E}(\gamma)=\int \gamma(\log (\gamma)-1)$ and then, once discretised also in space, we can re-write (1) as the minimization of the Kullback-Leibler distance. The new problem can be solved by using an alternate projections algorithm as the one detailed in [2]. Finally, we present some numerical results for different final configurations s^{\star} in dimension $d \geq 1$. As an example, in figure 1 we present numerical results for the Beltrami flow in \mathbb{R}^{2} : we plot the evolution of particles which at the initial time were in $[0,1 / 3] \times[0,1]($ red $),(1 / 3,2 / 3] \times[0,1]$ (green) and $(2 / 3,1] \times[0,1]$ (blue) .

Figure 1: Particles at different time steps. The final T is 0.9 and the number of marginals N is 16 .

Références

[1] Y. Brenier, Journal of American Mathematical Society. The least action principle and the related concept of generalized flows for incompressible perfect fluids, 1989.
[2] J.D. Benamou, G. Carlier, M. Cuturi, L. Nenna, G. Peyré, SIAM Journal on Scientific Computing. Iterative bregman projections for regularized transportation problems, Society for Industrial and Applied Mathematics, 37, 2, A1111-A1138, 2015.

