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A numerical method to solve generalized Euler equations.
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In this talk we present a numerical method to solve Brenier’s variational models for incompressible Euler
equations [1]. These models give rise to a relaxation in the space of measure-preserving plans of Arnold’s
interpretation in terms of geodesics. The relaxation of Euler equations proposed by Brenier can be
understood as requiring the resolution of a multi-marginal transportation with an infinite number of
marginals. When discretizing Brenier’s problem with K steps in time, one thus faces the resolution of a
K marginals OT problem:

inf

∫ K−1∑
i=1

1

K
|xi+1 − xi|2dγ(x1, · · · , xK) (1)

s.t. γ ≥ 0,

∫
γ = 1, (ei)]γ = Leb, i = 1, · · · ,K (e1, eK)]γ = (s?, s

?)]Leb, (2)

where the constraints (ei)]γ = Leb stand for the incompressibility of the fluid (Leb is the Lebesgue
measure on [0, 1]d) and (e1, eK)]γ = (s?, s

?)]Leb expresses that moving fluid particles from the initial
configuration s? (one usually has s? = Id) to the final one s? yields equivalent transport plans. We
regularise problem (1) by adding an entropy term E(γ) =

∫
γ(log(γ)− 1) and then, once discretised also

in space, we can re-write (1) as the minimization of the Kullback-Leibler distance. The new problem
can be solved by using an alternate projections algorithm as the one detailed in [2]. Finally, we present
some numerical results for different final configurations s? in dimension d ≥ 1. As an example, in figure
1 we present numerical results for the Beltrami flow in R2: we plot the evolution of particles which at
the initial time were in [0, 1/3]× [0, 1] (red), (1/3, 2/3]× [0, 1] (green) and (2/3, 1]× [0, 1] (blue).
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Figure 1: Particles at different time steps. The final T is 0.9 and the number of marginals N is 16.
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