A numerical method to solve generalized Euler equations.

Luca NENNA I.N.R.I.A, France

Jean-David, BENAMOU

I.N.R.I.A, France

Guillaume, CARLIER

Université Paris-Dauphine, France

Mots-clefs: Optimization, Optimal Transport, Kullback-Leibler, Bregman, Alternate projections, Entropic Method, Fluid Dynamics, Euler equations

In this talk we present a numerical method to solve Brenier's variational models for incompressible Euler equations [1]. These models give rise to a relaxation in the space of measure-preserving plans of Arnold's interpretation in terms of geodesics. The relaxation of Euler equations proposed by Brenier can be understood as requiring the resolution of a multi-marginal transportation with an infinite number of marginals. When discretizing Brenier's problem with K steps in time, one thus faces the resolution of a K marginals OT problem:

$$\inf \int \sum_{i=1}^{K-1} \frac{1}{K} |x_{i+1} - x_i|^2 d\gamma(x_1, \cdots, x_K)$$
(1)

s.t.
$$\gamma \ge 0$$
, $\int \gamma = 1$, $(e_i)_{\sharp} \gamma = Leb, i = 1, \cdots, K$ $(e_1, e_K)_{\sharp} \gamma = (s_\star, s^\star)_{\sharp} Leb$, (2)

where the constraints $(e_i)_{\sharp}\gamma = Leb$ stand for the incompressibility of the fluid (*Leb* is the Lebesgue measure on $[0, 1]^d$) and $(e_1, e_K)_{\sharp}\gamma = (s_\star, s^\star)_{\sharp}Leb$ expresses that moving fluid particles from the initial configuration s_\star (one usually has $s_\star = Id$) to the final one s^\star yields equivalent transport plans. We regularise problem (1) by adding an entropy term $\mathcal{E}(\gamma) = \int \gamma(\log(\gamma) - 1)$ and then, once discretised also in space, we can re-write (1) as the minimization of the Kullback-Leibler distance. The new problem can be solved by using an alternate projections algorithm as the one detailed in [2]. Finally, we present some numerical results for different final configurations s^\star in dimension $d \ge 1$. As an example, in figure 1 we present numerical results for the Beltrami flow in \mathbb{R}^2 : we plot the evolution of particles which at the initial time were in $[0, 1/3] \times [0, 1]$ (red), $(1/3, 2/3] \times [0, 1]$ (green) and $(2/3, 1] \times [0, 1]$ (blue).

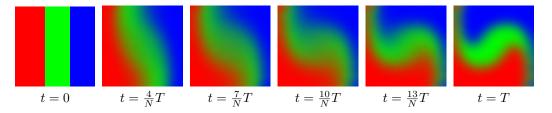


Figure 1: Particles at different time steps. The final T is 0.9 and the number of marginals N is 16.

Références

- [1] Y. BRENIER, Journal of American Mathematical Society. The least action principle and the related concept of generalized flows for incompressible perfect fluids, 1989.
- [2] J.D. BENAMOU, G. CARLIER, M. CUTURI, L. NENNA, G. PEYRÉ, SIAM Journal on Scientific Computing. Iterative bregman projections for regularized transportation problems, Society for Industrial and Applied Mathematics, 37, 2, A1111-A1138, 2015.