Learning in Mean Field Games: The Fictitious Play
 Pierre Cardliaguet
 Université de Paris Dauphine, CEREMADE, France

Saeed Hadikhanloo
Université de Paris Dauphine, LAMSADE, France
Keywords : Mean Field Games, Potential Games, Fictitious Play
Mean Field Game is a class of differential games in which each agent is infinitesimal and interacts with a huge population of other agents. These games have been introduced simultaneously by Lasry, Lions [3, 4] and Huang, Malhamé and Caines [2]. The classical notion of equilibrium solution in Mean Field Game (abbreviated MFG) is given by a pair of maps (u, m), where $u=u(t, x)$ is the value function of a typical small player while $m=m(t, x)$ denotes the density at time t and at position x of the population.
Our aim is to define a Fictitious Play for the MFG system and to prove the convergence of this procedure under suitable assumption on the couplings f and g. This yields to define by induction the sequences $u^{n}, m^{n}, \bar{m}^{n}$ by:

$$
\begin{cases}(i) & -\partial_{t} u^{n+1}-\sigma \Delta u^{n+1}+H\left(x, \nabla u^{n+1}(t, x)\right)=f\left(x, \bar{m}^{n}(t)\right), \tag{1}\\ (i i) \quad & \partial_{t} m^{n+1}-\sigma \Delta m^{n+1}-\operatorname{div}\left(m^{n+1} D_{p} H\left(x, \nabla u^{n+1}\right)\right)=0, \\ & m^{n+1}(0)=m_{0}, u^{n+1}(x, T)=g\left(x, \bar{m}^{n}(T)\right)\end{cases}
$$

where $\bar{m}^{n}=\frac{1}{n} \sum_{k=1}^{n} m^{k}$. Indeed, u^{n+1} is the value function at stage $n+1$ if the belief of players on the evolving density is \bar{m}^{n}, and thus solves (1)-(i). The actual density then evolves according to the Fokker-Planck equation (1)-(ii).
Our main result is that, under suitable assumption, this learning procedure converges, i.e., any cluster point of the pre-compact sequence $\left(u^{n}, m^{n}\right)$ is a solution of the MFG system.

References

[1] Huang M., Caines P. E., and Malhamé R. P., Individual and mass behaviour in large population stochastic wireless power control problems: centralized and Nash equilibrium solutions. Proc. 42nd IEEE Conf. Decision Contr., Maui, Hawaii, pp. 98-103, Dec. 2003.
[2] Huang, M., Malhamé, R.P., Caines, P.E. (2006). Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Communication in information and systems. Vol. 6, No. 3, pp. 221-252.
[3] Lasry, J.-M., Lions, P.-L. Jeux à champ moyen. II. Horizon fini et contrôle optimal. C. R. Math. Acad. Sci. Paris 343 (2006), no. 10, 679-684.
[4] Lasry, J.-M., Lions, P.-L. Mean field games. Jpn. J. Math. 2 (2007), no. 1, 229-260.
[5] Monderer, D., Shapley L.S.. Potential games. Games and economic behavior 14.1 (1996): 124-143.
[6] Monderer D., and Shapley L.S., Fictitious play property for games with identical interests. Journal of economic theory 68.1 (1996): 258-265.

