Generalized Additive Independence models and k-ary capacities in multicriteria decision making

Michel GRABISCH* and Christophe LABREUCHE**

*Université de Paris I, Paris School of Economics, France
**Thales Research & Technology, Palaiseau, France
Multiattribute utility theory (MAUT) is a widely used framework for decision under multiple criteria.
Multiattribute utility theory (MAUT) is a widely used framework for decision under multiple criteria. The most popular models in MAUT are the additive utility model, and the multiplicative model, satisfying (mutual) preferential independence.
Multiattribute utility theory (MAUT) is a widely used framework for decision under multiple criteria.
The most popular models in MAUT are the additive utility model, and the multiplicative model, satisfying (mutual) preferential independence.
So far, few models take into account interaction between criteria: the Choquet integral model (Lovász extension), and the multilinear model (Owen extension).
Introduction

- Multiattribute utility theory (MAUT) is a widely used framework for decision under multiple criteria.
- The most popular models in MAUT are the additive utility model, and the multiplicative model, satisfying (mutual) preferential independence.
- So far, few models take into account interaction between criteria: the Choquet integral model (Lovász extension), and the multilinear model (Owen extension).
- The GAI (Generalized Additive Independence) model generalizes the additive model, does not satisfy preferential independence, and includes as particular cases CI, MLE.
Multiattribute utility theory (MAUT) is a widely used framework for decision under multiple criteria.

The most popular models in MAUT are the additive utility model, and the multiplicative model, satisfying (mutual) preferential independence.

So far, few models take into account interaction between criteria: the Choquet integral model (Lovász extension), and the multilinear model (Owen extension).

The GAI (Generalized Additive Independence) model generalizes the additive model, does not satisfy preferential independence, and includes as particular cases CI, MLE.

Aim of the talk: relate the GAI model with k-ary capacities.
Framework

- $N = \{1, \ldots, n\}$: set of attributes
Framework

- $N = \{1, \ldots, n\}$: set of attributes
- X_i: set of values of attribute i
Framework

- $N = \{1, \ldots, n\}$: set of attributes
- X_i: set of values of attribute i
- $X = X_1 \times \cdots \times X_n$: set of potential alternatives
Framework

- $N = \{1, \ldots, n\}$: set of attributes
- X_i: set of values of attribute i
- $X = X_1 \times \cdots \times X_n$: set of potential alternatives
- \succeq_i: preference relation on X_i
Framework

- $N = \{1, \ldots, n\}$: set of attributes
- X_i: set of values of attribute i
- $X = X_1 \times \cdots \times X_n$: set of potential alternatives
- \succeq_i: preference relation on X_i
- Aim: find a utility function $U : X \rightarrow \mathbb{R}$ representing the preference of the DM on X
Framework

- $N = \{1, \ldots, n\}$: set of attributes
- X_i: set of values of attribute i
- $X = X_1 \times \cdots \times X_n$: set of potential alternatives
- \succ_i: preference relation on X_i
- **Aim**: find a utility function $U : X \rightarrow \mathbb{R}$ representing the preference of the DM on X
- **Assumption 1**: Monotonicity:

\[\forall i \in N, x_i \succ_i y_i \Rightarrow U(x) \geq U(y) \]
Framework

- $N = \{1, \ldots, n\}$: set of attributes
- X_i: set of values of attribute i
- $X = X_1 \times \cdots \times X_n$: set of potential alternatives
- \succ_i: preference relation on X_i
- Aim: find a utility function $U : X \rightarrow \mathbb{R}$ representing the preference of the DM on X
- **Assumption 1**: Monotonicity:
 \[
 \forall i \in N, x_i \succ_i y_i \Rightarrow U(x) \geq U(y)
 \]
- **Assumption 2**: Boundaries:
 \[
 U(x_i^\top, \ldots, x_n^\top) = 1, \quad U(x_i^\perp, \ldots, x_n^\perp) = 0
 \]
 with x_i^\top, x_i^\perp the best and worst elements of X_i according to \succ_i
The GAI (Generalized Additive Independence) model

- **Additive Utility model**

\[U(x) = u_1(x_1) + \cdots + u_n(x_n) \]
The GAI (Generalized Additive Independence) model

- **Additive Utility model**

 \[U(x) = u_1(x_1) + \cdots + u_n(x_n) \]

- **GAI model (Fishburn 1967)**

 \[U(x) = \sum_{S \in S} u_S(x_S) \]

 with \(S \subseteq 2^N \setminus \{\emptyset\} \) and \(u_S : X_S \rightarrow \mathbb{R} \)
The GAI (Generalized Additive Independence) model

- **Additive Utility model**

 \[U(x) = u_1(x_1) + \cdots + u_n(x_n) \]

- **GAI model (Fishburn 1967)**

 \[U(x) = \sum_{S \in S} u_S(x_S) \]

 with \(S \subseteq 2^N \setminus \{\emptyset\} \) and \(u_S : X_S \to \mathbb{R} \)

- Each term \(u_S \) is supposed to represent the interaction among attributes in \(S \)
The GAI (Generalized Additive Independence) model

- **Additive Utility model**
 \[U(x) = u_1(x_1) + \cdots + u_n(x_n) \]

- **GAI model (Fishburn 1967)**
 \[U(x) = \sum_{S \in \mathcal{S}} u_S(x_S) \]

 with \(\mathcal{S} \subseteq 2^N \setminus \{\emptyset\} \) and \(u_S : X_S \to \mathbb{R} \)

- Each term \(u_S \) is supposed to represent the interaction among attributes in \(S \)

- A GAI model is **\(p \)-additive** if any set \(S \in \mathcal{S} \) satisfies \(|S| \leq p \). Hence, a 1-additive GAI model is a classical additive utility model.
Capacities and k-ary capacities

A capacity (Choquet 1953) is a set function $\nu : 2^N \to \mathbb{R}$ such that
A capacity (Choquet 1953) is a set function $\nu : 2^N \rightarrow \mathbb{R}$ such that

$\nu(\emptyset) = 0$
Capacities and k-ary capacities

A capacity (Choquet 1953) is a set function $\nu : 2^N \to \mathbb{R}$ such that

- $\nu(\emptyset) = 0$
- $S \subseteq T$ implies $\nu(S) \leq \nu(T)$ (monotonicity)
A capacity (Choquet 1953) is a set function \(\nu : 2^N \rightarrow \mathbb{R} \) such that

- \(\nu(\emptyset) = 0 \)
- \(S \subseteq T \) implies \(\nu(S) \leq \nu(T) \) (monotonicity)

A capacity \(\nu \) is \textit{normalized} if \(\nu(N) = 1 \).
Capacities and k-ary capacities

- A capacity (Choquet 1953) is a set function $\nu : 2^N \to \mathbb{R}$ such that
 - $\nu(\emptyset) = 0$
 - $S \subseteq T$ implies $\nu(S) \leq \nu(T)$ (monotonicity)
- A capacity ν is normalized if $\nu(N) = 1$.
- Writing $2^N \equiv \{0, 1\}^N$, $\nu(S)$ can be rewritten as $\nu(1_S)$.
Capacities and k-ary capacities

- A capacity (Choquet 1953) is a set function $\nu : 2^N \rightarrow \mathbb{R}$ such that
 - $\nu(\emptyset) = 0$
 - $S \subseteq T$ implies $\nu(S) \leq \nu(T)$ (monotonicity)
- A capacity ν is normalized if $\nu(N) = 1$.
- Writing $2^N \equiv \{0, 1\}^N$, $\nu(S)$ can be rewritten as $\nu(1_S)$
- One may then consider k-ary capacities (G. and Labreuche 2003) $\nu : \{0, 1, \ldots, k\}^N \rightarrow \mathbb{R}$ (a.k.a. multichoice games, Hsiao and Raghavan 1990):
 $$\nu(0) = 0, \quad z \leq z' \Rightarrow \nu(z) \leq \nu(z')$$
Capacities and \(k\)-ary capacities

- A capacity (Choquet 1953) is a set function \(\nu : 2^N \rightarrow \mathbb{R}\) such that
 - \(\nu(\emptyset) = 0\)
 - \(S \subseteq T\) implies \(\nu(S) \leq \nu(T)\) (monotonicity)
- A capacity \(\nu\) is normalized if \(\nu(N) = 1\).
- Writing \(2^N \equiv \{0, 1\}^N\), \(\nu(S)\) can be rewritten as \(\nu(1^S)\)
- One may then consider \(k\)-ary capacities (G. and Labreuche 2003) \(\nu : \{0, 1, \ldots, k\}^N \rightarrow \mathbb{R}\) (a.k.a. multichoice games, Hsiao and Raghavan 1990):
 - \(\nu(0) = 0\), \(z \leq z' \Rightarrow \nu(z) \leq \nu(z')\)
- 1-ary capacities are classical capacities
Capacities and k-ary capacities

- A capacity (Choquet 1953) is a set function $v : 2^N \rightarrow \mathbb{R}$ such that
 - $v(\emptyset) = 0$
 - $S \subseteq T$ implies $v(S) \leq v(T)$ (monotonicity)
- A capacity v is normalized if $v(N) = 1$.
- Writing $2^N \equiv \{0, 1\}^N$, $v(S)$ can be rewritten as $v(1^S)$
- One may then consider k-ary capacities (G. and Labreuche 2003) $v : \{0, 1, \ldots, k\}^N \rightarrow \mathbb{R}$ (a.k.a. multichoice games, Hsiao and Raghavan 1990):
 - $v(0) = 0$, $z \leq z' \Rightarrow v(z) \leq v(z')$
- 1-ary capacities are classical capacities
- v is normalized if $v(1) = 1$
Capacities and \(k\)-ary capacities

- A **capacity** (Choquet 1953) is a set function \(v : 2^N \rightarrow \mathbb{R}\) such that
 - \(v(\emptyset) = 0\)
 - \(S \subseteq T\) implies \(v(S) \leq v(T)\) (monotonicity)
- A capacity \(v\) is **normalized** if \(v(N) = 1\).
- Writing \(2^N \equiv \{0, 1\}^N\), \(v(S)\) can be rewritten as \(v(1_S)\)
- One may then consider **\(k\)-ary capacities** (G. and Labreuche 2003) \(v : \{0, 1, \ldots, k\}^N \rightarrow \mathbb{R}\) (a.k.a. multichoice games, Hsiao and Raghavan 1990):
 \[v(0) = 0, \quad z \leq z' \Rightarrow v(z) \leq v(z')\]
- 1-ary capacities are classical capacities
- \(v\) is **normalized** if \(v(1) = 1\)
- Here we consider only normalized \(k\)-ary capacities
Discrete GAI models are k-ary capacities

- We consider that attributes are discrete:

\[X_i = \{ a_{i,0}^i, \ldots, a_{i,m_i}^i \} \]

with $a_{i,0}^i \preceq_i \cdots \preceq_i a_{i,m_i}^i$.
Discrete GAI models are k-ary capacities

- We consider that attributes are discrete:

$$X_i = \{a_i^0, \ldots, a_i^{m_i}\}$$

with $a_i^0 \ll_i \cdots \ll_i a_i^{m_i}$.

- Any alternative $x \in X$ is mapped to $\{0, \ldots, m_1\} \times \cdots \times \{0, \ldots, m_n\}$ by $x \mapsto \varphi(x)$.
Discrete GAI models are \(k \)-ary capacities

- We consider that attributes are discrete:
 \[X_i = \{a^0_i, \ldots, a^{m_i}_i\} \]
 with \(a^0_i \preceq_i \cdots \preceq_i a^{m_i}_i \).

- Any alternative \(x \in X \) is mapped to
 \(\{0, \ldots, m_1\} \times \cdots \times \{0, \ldots, m_n\} \) by \(x \mapsto \varphi(x) \).

- Letting \(k = \max_i m_i \), we consider \(\{0, \ldots, k\}^N \).
Discrete GAI models are \(k \)-ary capacities

- We consider that attributes are discrete:
 \[
 X_i = \{a_i^0, \ldots, a_i^{m_i}\}
 \]
 with \(a_i^0 \preceq_i \cdots \preceq_i a_i^{m_i} \).

- Any alternative \(x \in X \) is mapped to
 \[
 \{0, \ldots, m_1\} \times \cdots \times \{0, \ldots, m_n\}
 \]
 by \(x \mapsto \varphi(x) \).

- Letting \(k = \max_i m_i \), we consider \(\{0, \ldots, k\}^N \).

- Given a GAI model \(U \) with discrete attributes, we define
 \(\nu : \{0, \ldots, k\}^N \to \mathbb{R} \) by
 \[
 U(x) =: \nu(\varphi(x)) \quad (x \in X)
 \]
 and let \(\nu(z) := \nu(m_1, \ldots, m_n) \) when \(z \in \{0, \ldots, k\}^N \setminus \varphi(X) \).
Discrete GAI models are k-ary capacities

- We consider that attributes are discrete:
 \[X_i = \{a_i^0, \ldots, a_i^{m_i}\} \]
 with \(a_i^0 \preceq_i \cdots \preceq_i a_i^{m_i}\).

- Any alternative \(x \in X\) is mapped to
 \(\{0, \ldots, m_1\} \times \cdots \times \{0, \ldots, m_n\}\) by \(x \mapsto \varphi(x)\).

- Letting \(k = \max_i m_i\), we consider \(\{0, \ldots, k\}^N\).

- Given a GAI model \(U\) with discrete attributes, we define \(v:\{0, \ldots, k\}^N \to \mathbb{R}\) by
 \[U(x) =: v(\varphi(x)) \quad (x \in X) \]
 and let \(v(z) := v(m_1, \ldots, m_n)\) when \(z \in \{0, \ldots, k\}^N \setminus \varphi(X)\).

- By assumptions 1 and 2 on \(U\), it follows that \(v\) is a normalized k-ary capacity on \(N\).
Let \(\nu : 2^N \rightarrow \mathbb{R} \) be a capacity. Its **Möbius transform** \(m^\nu \) is the (unique) solution of

\[
\nu(S) = \sum_{T \subseteq S} m^\nu(T)
\]

given by

\[
m^\nu(S) = \sum_{T \subseteq S} (-1)^{|S| - |T|} \nu(T)
\]
p-additive capacities and k-ary capacities

- Let $\nu : 2^N \rightarrow \mathbb{R}$ be a capacity. Its M"obius transform m^{ν} is the (unique) solution of

$$
\nu(S) = \sum_{T \subseteq S} m^{\nu}(T)
$$

given by

$$
m^{\nu}(S) = \sum_{T \subseteq S} (-1)^{|S \setminus T|} \nu(T)
$$

- A capacity ν is (at most) p-additive if $m^{\nu}(S) = 0$ whenever $|S| > p$.

M. Grabisch and Ch. Labreuche ©2016 The GAI model and k-ary capacities
p-additive capacities and k-ary capacities

- Let $\nu : 2^N \to \mathbb{R}$ be a capacity. Its Möbius transform m^ν is the (unique) solution of

$$
\nu(S) = \sum_{T \subseteq S} m^\nu(T)
$$

given by

$$
m^\nu(S) = \sum_{T \subseteq S} (-1)^{|S \setminus T|} \nu(T)
$$

- A capacity ν is (at most) p-additive if $m^\nu(S) = 0$ whenever $|S| > p$.

- Given a k-ary capacity ν, its Möbius transform m^ν is defined as the unique solution of $\nu(z) = \sum_{y \leq z} m^\nu(y)$, which is:

$$
m^\nu(z) = \sum_{y \leq z : z_i - y_i \leq 1 \forall i \in N} (-1)^{\sum_{i \in N}(z_i - y_i)} \nu(y)
$$
Let \(v : 2^N \to \mathbb{R} \) be a capacity. Its Möbius transform \(m^v \) is the (unique) solution of
\[
v(S) = \sum_{T \subseteq S} m^v(T)
\]
given by
\[
m^v(S) = \sum_{T \subseteq S} (-1)^{|S \setminus T|} v(T)
\]
A capacity \(v \) is \textit{(at most) \(p \)-additive} if \(m^v(S) = 0 \) whenever \(|S| > p \).

Given a \(k \)-ary capacity \(v \), its Möbius transform \(m^v \) is defined as the unique solution of \(v(z) = \sum_{y \leq z} m^v(y) \), which is:
\[
m^v(z) = \sum_{y \leq z : z_i - y_i \leq 1 \forall i \in N} (-1)^{\sum_{i \in N} (z_i - y_i)} v(y)
\]
A \(k \)-ary capacity is \textit{(at most) \(p \)-additive} if \(m^v(z) = 0 \) whenever \(|\text{supp}(z)| > p \), where
\[
\text{supp}(z) = \{i \in N \mid z_i > 0\}
\]
A GAI model is \textit{p-additive} if any set \(S \in \mathcal{S} \) satisfies \(|S| \leq p \). Hence, a 1-additive GAI model is a classical additive utility model.
A GAI model is \textit{\(p\)-additive} if any set \(S \in \mathcal{S}\) satisfies \(|S| \leq p\). Hence, a 1-additive GAI model is a classical additive utility model.

\textbf{Lemma}

Let \(k \in \mathbb{N}\) and \(p \in \{1, \ldots, n\}\). A \(k\)-ary game \(v\) is \(p\)-additive if and only if it has the form

\[
v(z) = \sum_{x \in \{0, \ldots, k\}^N, |\text{supp}(x)| \leq p} v_x(x \land z)
\]

where \(v_x : \{0, \ldots, k\}^N \to \mathbb{R}\) with \(v_x(0) = 0\).
A GAI model is \textit{p-additive} if any set $S \in \mathcal{S}$ satisfies $|S| \leq p$. Hence, a 1-additive GAI model is a classical additive utility model.

\textbf{Lemma}

Let $k \in \mathbb{N}$ and $p \in \{1, \ldots, n\}$. A k-ary game v is p-additive if and only if it has the form

$$v(z) = \sum_{x \in \{0, \ldots, k\}^N, |\text{supp}(x)| \leq p} v_x(x \land z)$$

where $v_x : \{0, \ldots, k\}^N \rightarrow \mathbb{R}$ with $v_x(0) = 0$.

It follows that p-additive discrete GAI models are p-additive k-ary capacities (for some $k \in \mathbb{N}$).
The problem

In general, if U is a GAI model, its decomposition is not unique.
The problem

In general, if U is a GAI model, its decomposition is not unique. For example:

$$U(x_1, x_2) = 2x_1 + x_2 - \max(x_1, x_2) \quad (x \in \mathbb{R}_+^2)$$
The problem

In general, if U is a GAI model, its decomposition is not unique. For example:

$$U(x_1, x_2) = 2x_1 + x_2 - \max(x_1, x_2) \quad (x \in \mathbb{R}^2_+)$$

is equivalent to

$$U(x_1, x_2) = x_1 + \min(x_1, x_2) \quad (x \in \mathbb{R}^2_+)$$
In general, if U is a GAI model, its decomposition is not unique. For example:

$$U(x_1, x_2) = 2x_1 + x_2 - \max(x_1, x_2) \quad (x \in \mathbb{R}^2_+)$$

is equivalent to

$$U(x_1, x_2) = x_1 + \min(x_1, x_2) \quad (x \in \mathbb{R}^2_+)$$

Observe that in the 2nd decomposition, all terms are nonnegative and monotone nondecreasing.
The problem

In general, if U is a GAI model, its decomposition is not unique. For example:

$$U(x_1, x_2) = 2x_1 + x_2 - \max(x_1, x_2) \quad (x \in \mathbb{R}^2_+)$$

is equivalent to

$$U(x_1, x_2) = x_1 + \min(x_1, x_2) \quad (x \in \mathbb{R}^2_+)$$

Observe that in the 2nd decomposition, all terms are nonnegative and monotone nondecreasing.

Given a GAI model, is it always possible to get a decomposition into nonnegative nondecreasing terms?
The problem

In general, if U is a GAI model, its decomposition is not unique. For example:

$$U(x_1, x_2) = 2x_1 + x_2 - \max(x_1, x_2) \quad (x \in \mathbb{R}_+^2)$$

is equivalent to

$$U(x_1, x_2) = x_1 + \min(x_1, x_2) \quad (x \in \mathbb{R}_+^2)$$

Observe that in the 2nd decomposition, all terms are nonnegative and monotone nondecreasing.

Given a GAI model, is it always possible to get a decomposition into nonnegative nondecreasing terms?

We answer this question for 2-additive discrete GAI models (and the answer is: Yes!)
Determining a 2-additive GAI model with $k + 1$ elements in each attribute by learning yields an optimization problem with

$$(k + 1) \binom{n}{1} + (k + 1)^2 \binom{n}{2}$$

unknowns.
Why it is important to solve this problem

- Determining a 2-additive GAI model with $k + 1$ elements in each attribute by learning yields an optimization problem with
 \[(k + 1) \binom{n}{1} + (k + 1)^2 \binom{n}{2}\]
 unknowns.

- Moreover, U being nondecreasing, we have
 \[n \times k \times (k + 1)^{n-1}\]
 monotonicity conditions to satisfy.
Why it is important to solve this problem

- Determining a 2-additive GAI model with \(k + 1 \) elements in each attribute by learning yields an optimization problem with

\[
(k + 1)\binom{n}{1} + (k + 1)^2\binom{n}{2}
\]

unknowns.

- Moreover, \(U \) being nondecreasing, we have

\[
n \times k \times (k + 1)^{n-1}
\]

monotonicity conditions to satisfy.

- If a decomposition into nonnegative nondecreasing terms is possible, one has only to check monotonicity of each term. Then the number of monotonicity conditions drops to

\[
n \times k \times [(n - 1)(k + 1) + 1]
\]
Why it is important to solve this problem

Comparison table with $k = 4$:

<table>
<thead>
<tr>
<th>n</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td># of constraints</td>
<td>2000</td>
<td>75 000</td>
<td>2 500 000</td>
<td>78 125 000</td>
</tr>
<tr>
<td># of constraints with monotone decomposition</td>
<td>256</td>
<td>624</td>
<td>1152</td>
<td>1840</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>12</th>
<th>14</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td># of constraints</td>
<td>2 343 750 000</td>
<td>68 359 375 000</td>
<td>$1.526E+15$</td>
</tr>
<tr>
<td># of constraints with monotone decomposition</td>
<td>2688</td>
<td>3696</td>
<td>7680</td>
</tr>
</tbody>
</table>
The main result

Theorem

Let us consider a 2-additive discrete GAI model U satisfying assumptions 1 and 2. Then there exist nonnegative and nondecreasing functions $u_i : X_i \rightarrow [0, 1]$, $i \in N$, $u_{ij} : X_i \times X_j \rightarrow [0, 1]$, $\{i, j\} \subseteq N$, such that

$$U(x) = \sum_{i \in N} u_i(x_i) + \sum_{\{i, j\} \subseteq N} u_{ij}(x_i, x_j) \quad (x \in X)$$
The problem is equivalent to the decomposition of a 2-additive normalized k-ary capacity ν into a sum of 2-additive k-ary capacities whose support has size at most 2.
The problem is equivalent to the decomposition of a 2-additive normalized \(k \)-ary capacity \(\nu \) into a sum of 2-additive \(k \)-ary capacities whose support has size at most 2.

support of \(\nu \):

\[
\text{supp}(\nu) = \bigcup_{x \in L^N : m^\nu(x) \neq 0} \text{supp}(x)
\]

(i.e., \(\nu \) depends only on the variables in \(\text{supp}(\nu) \))
The problem is equivalent to the decomposition of a 2-additive normalized k-ary capacity v into a sum of 2-additive k-ary capacities whose support has size at most 2.

support of v:

$$\text{supp}(v) = \bigcup_{x \in L^N: m^v(x) \neq 0} \text{supp}(x)$$

(i.e., v depends only on the variables in $\text{supp}(v)$)

Let $P_{k,2}$ be the polytope of all normalized 2-additive k-ary capacities
Sketch of the proof

- The problem is equivalent to the decomposition of a 2-additive normalized k-ary capacity v into a sum of 2-additive k-ary capacities whose support has size at most 2.

- **support of v:**

$$\text{supp}(v) = \bigcup_{x \in L^N: m^v(x) \neq 0} \text{supp}(x)$$

(i.e., v depends only on the variables in $\text{supp}(v)$)

- Let $P_{k,2}$ be the polytope of all normalized 2-additive k-ary capacities.

- We prove that any vertex of $P_{k,2}$ has support of size at most 2.
Sketch of the proof

- The problem is equivalent to the decomposition of a 2-additive normalized k-ary capacity ν into a sum of 2-additive k-ary capacities whose support has size at most 2.

- **support of ν:**
 \[
 \text{supp}(\nu) = \bigcup_{x \in L^N: m^\nu(x) \neq 0} \text{supp}(x)
 \]
 (i.e., ν depends only on the variables in $\text{supp}(\nu)$)

- Let $\mathcal{P}_{k,2}$ be the polytope of all normalized 2-additive k-ary capacities.

- We prove that any vertex of $\mathcal{P}_{k,2}$ has support of size at most 2.

- Since any $\nu \in \mathcal{P}_{k,2}$ is a convex combination of vertices of $\mathcal{P}_{k,2}$, which are normalized 2-additive k-ary capacities, the desired result follows.
Theorem

Let $k \in \mathbb{N}$. The set of extreme points of $\mathcal{P}_{k,2}$, the polytope of normalized 2-additive k-ary capacities, is the set of 0-1-valued 2-additive k-ary capacities.
Vertices of $\mathcal{P}_{k,2}$

Theorem

Let $k \in \mathbb{N}$. The set of extreme points of $\mathcal{P}_{k,2}$, the polytope of normalized 2-additive k-ary capacities, is the set of 0-1-valued 2-additive k-ary capacities.

Theorem

For every $k \in \mathbb{N}$, the size of the support of any 0-1-valued 2-additive k-ary capacity is at most 2.
Vertices of $\mathcal{P}_{k,2}$: sketch of the proof

We recall that a matrix A is totally unimodular iff the polyhedron $Ax \leq b$ is integer for every b.
We recall that a matrix \(A \) is totally unimodular iff the polyhedron \(Ax \leq b \) is integer for every \(b \).

1. Step 1: the set of vertices of \(P_{k,1} \), (normalized \(k \)-ary capacities) is the set of 0-1-valued \(k \)-ary capacities. Therefore, it remains to prove that any vertex of \(P_{k,2} \) is 0-1-valued.
Vertices of $\mathcal{P}_{k,2}$: sketch of the proof

We recall that a matrix A is totally unimodular iff the polyhedron $Ax \leq b$ is integer for every b.

▶ Step 1: the set of vertices of $\mathcal{P}_{k,\cdot}$ (normalized k-ary capacities) is the set of 0-1-valued k-ary capacities. Therefore, it remains to prove that any vertex of $\mathcal{P}_{k,2}$ is 0-1-valued.

▶ Step 2: We prove that $A_{k,\cdot}$, the matrix defining $\mathcal{P}_{k,\cdot}$, is totally unimodular.
Vertices of $\mathcal{P}_{k,2}$: sketch of the proof

We recall that a matrix A is totally unimodular iff the polyhedron $Ax \leq b$ is integer for every b.

- Step 1: the set of vertices of $\mathcal{P}_{k,\cdot}$ (normalized k-ary capacities) is the set of 0-1-valued k-ary capacities. Therefore, it remains to prove that any vertex of $\mathcal{P}_{k,2}$ is 0-1-valued.
- Step 2: We prove that $A_{k,\cdot}$, the matrix defining $\mathcal{P}_{k,\cdot}$, is totally unimodular.

- It follows that the polytope $A_{k,\cdot}x \leq b$ is integer $\forall b$, and so is the polytope $A^m_{k,\cdot}m^\vee \leq b$ for all b (same in the Möbius transform coordinates). Therefore, $A^m_{k,\cdot}$ is also totally unimodular.
Vertices of $\mathcal{P}_{k,2}$: sketch of the proof

We recall that a matrix A is totally unimodular iff the polyhedron $Ax \leq b$ is integer for every b.

- Step 1: the set of vertices of $\mathcal{P}_{k,\cdot}$ (normalized k-ary capacities) is the set of 0-1-valued k-ary capacities. Therefore, it remains to prove that any vertex of $\mathcal{P}_{k,2}$ is 0-1-valued.

- Step 2: We prove that $A_{k,\cdot}$, the matrix defining $\mathcal{P}_{k,\cdot}$, is totally unimodular.

It follows that the polytope $A_{k,\cdot}x \leq b$ is integer $\forall b$, and so is the polytope $A_{k,\cdot}^m m^\vee \leq b$ for all b (same in the Möbius transform coordinates). Therefore, $A_{k,\cdot}^m$ is also totally unimodular.

As $A_{k,2}^m$ is a submatrix of $A_{k,\cdot}^m$, it is also totally unimodular. Therefore, the vertices of $\mathcal{P}_{k,2}^m$ are integer-valued.
Vertices of $\mathcal{P}_{k,2}$: sketch of the proof

We recall that a matrix A is totally unimodular iff the polyhedron $Ax \leq b$ is integer for every b.

- **Step 1:** the set of vertices of $\mathcal{P}_{k,\cdot}$ (normalized k-ary capacities) is the set of 0-1-valued k-ary capacities. Therefore, it remains to prove that any vertex of $\mathcal{P}_{k,2}$ is 0-1-valued.

- **Step 2:** We prove that $A_{k,\cdot}$, the matrix defining $\mathcal{P}_{k,\cdot}$, is totally unimodular.

It follows that the polytope $A_{k,\cdot}x \leq b$ is integer $\forall b$, and so is the polytope $A^m_{k,\cdot}m^\vee \leq b$ for all b (same in the Möbius transform coordinates). Therefore, $A^m_{k,\cdot}$ is also totally unimodular.

- As $A^m_{k,2}$ is a submatrix of $A^m_{k,\cdot}$, it is also totally unimodular. Therefore, the vertices of $\mathcal{P}^m_{k,2}$ are integer-valued.

- We prove that the vertices of $\mathcal{P}^m_{k,2}$ are $\{-1, 0, 1\}$-valued.
We recall that a matrix A is totally unimodular iff the polyhedron $Ax \leq b$ is integer for every b.

- Step 1: the set of vertices of $P_{k,2}$ (normalized k-ary capacities) is the set of 0-1-valued k-ary capacities. Therefore, it remains to prove that any vertex of $P_{k,2}$ is 0-1-valued.

- Step 2: We prove that $A_{k,2}$, the matrix defining $P_{k,2}$, is totally unimodular.

- It follows that the polytope $A_{k,2}x \leq b$ is integer $\forall b$, and so is the polytope $A_{k,2}^m m^v \leq b$ for all b (same in the Möbius transform coordinates). Therefore, $A_{k,2}^m$ is also totally unimodular.

- As $A_{k,2}^m$ is a submatrix of $A_{k,2}^m$, it is also totally unimodular. Therefore, the vertices of $P_{k,2}^m$ are integer-valued.

- We prove that the vertices of $P_{k,2}^m$ are $\{-1, 0, 1\}$-valued.

- We prove that v is 0-1-valued iff m^v is $\{-1, 0, 1\}$-valued. The desired result then follows.
Determination of all vertices of $\mathcal{P}_{k,2}$

Preliminary step: one shows that the vertices of $\mathcal{P}_{k,2}$ with support included in, say, $\{1, 2\}$, are in bijection with the antichains (which are of size at most $k + 1$) of the lattice $(k + 1)^2$.
Determination of all vertices of $\mathcal{P}_{k,2}$

Preliminary step: one shows that the vertices of $\mathcal{P}_{k,2}$ with support included in, say, $\{1, 2\}$, are in bijection with the antichains (which are of size at most $k + 1$) of the lattice $(k + 1)^2$. Hence denumbering the vertices amounts to denumbering the antichains of $(k + 1)^2$.
Determination of all vertices of $\mathcal{P}_{k,2}$

Preliminary step: one shows that the vertices of $\mathcal{P}_{k,2}$ with support included in, say, $\{1, 2\}$, are in bijection with the antichains (which are of size at most $k + 1$) of the lattice $(k + 1)^2$. Hence denumbering the vertices amounts to denumbering the antichains of $(k + 1)^2$.

Theorem

Let $k \in \mathbb{N}$ and consider the polytope $\mathcal{P}_{k,2}$. The following holds.

1. For any $i \in \mathbb{N}$, the number of vertices with support $\{i\}$ is k.
2. For any distinct $i, j \in \mathbb{N}$, the number of vertices with support included in $\{i, j\}$ is $\binom{2k + 2}{k + 1} - 2$.
3. The total number of vertices of $\mathcal{P}_{k,2}$ is

$$\left[\binom{2k + 2}{k + 1} - 2\right] \frac{n(n - 1)}{2} - kn(n - 2).$$
Any vertex is 0-1-valued and has support of size at most 2, say \{1, 2\}
More details on vertices

- Any vertex is 0-1-valued and has support of size at most 2, say \(\{1, 2\}\)
- Hence vertices are linear combination of unanimity games with support included in \(\{1, 2\}\)
More details on vertices

- Any vertex is 0-1-valued and has support of size at most 2, say \{1, 2\}
- Hence vertices are linear combination of unanimity games with support included in \{1, 2\}
- By analogy, \(x \in L^N \) is \textit{winning} for \(v \) if \(v(x) = 1 \)
More details on vertices

- Any vertex is 0-1-valued and has support of size at most 2, say \(\{1, 2\} \)
- Hence vertices are linear combination of unanimity games with support included in \(\{1, 2\} \)
- By analogy, \(x \in L^N \) is winning for \(v \) if \(v(x) = 1 \)
- \(\text{supp}(v) \subseteq \{1, 2\} \) iff its minimal winning coalitions have their support in \(\{1, 2\} \), and there can be at most \(k + 1 \) distinct minimal winning coalitions
More details on vertices

- Any vertex is 0-1-valued and has support of size at most 2, say \(\{1, 2\} \)
- Hence vertices are linear combination of unanimity games with support included in \(\{1, 2\} \)
- By analogy, \(x \in L^N \) is \textit{winning} for \(v \) if \(v(x) = 1 \)
- \(\text{supp}(v) \subseteq \{1, 2\} \) iff its minimal winning coalitions have their support in \(\{1, 2\} \), and there can be at most \(k + 1 \) distinct minimal winning coalitions
- Suppose that \(\text{supp}(v) \subseteq \{1, 2\} \). Denote by \(x^1, \ldots, x^q \) the minimal winning coalitions of \(v \), arranged such that \(x^1 < x^2 < \cdots < x^q \). Then \(m^v(x^\ell) = 1 \) for all \(\ell = 1, \ldots, q \), \(m^v(x^\ell \lor x^{\ell+1}) = -1 \) for \(\ell = 1, \ldots, q - 1 \), and \(m^v(x) = 0 \) otherwise.
More details on vertices
More details on vertices