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Introducing the Problem

Dynamics and Observation Model

Process:
xt+1 = Ftxt + wt

Measurements:
zt = Htxt + vt

x ∈ Rn, a state vector

w ∈ Rn, random noise

z ∈ Rm, an observation

v ∈ Rm, more noise

H and F are real-valued matrices.

Problem

Given the observed values of z0, ..., zt , find an estimate of xT
which minimizes some loss function.
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Introducing the Problem

Introducing the Problem

Possible cases.

1 T < t. Data Smoothing Problem: Estimate previous state
from current measurements.

2 T = t. Filtering Problem: Sequential Estimation of states.

3 T > t. Prediction Problem: Estimate future state from
current measurements.

Example to keep in mind: Autopilot in UAVs.

A drone is equipped with a GPS and accelerometer. Where was it,
where is it, and where will it go?
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Introducing the Problem

The Classical Case

Classical Assumptions

Let {wt}, {vt} be Gaussian with mean zero.

The error functional is the distribution of xT |z0, ..., zt .

This gives the Maximum A Posteriori (MAP) Estimator of xT
given z

Considered by Rudolf Kalman in 1960, who used these
assumptions to derive the Kalman Filter.

Recursive estimator: only keeps track of a posteriori state
estimate and covariance matrix

Requires only matrix multiplication

Ubiquitous in practice
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Introducing the Problem

Mathematical Structure

Central to Kalman’s derivation is the following theorem:

Theorem (Kalman, 1960)

The classical MAP problem is dual to the Linear-Quadratic
Regulator problem of optimal control, in the sense that there is a
bijection between the Riccati equations that characterize their
solutions.

A Riccati equation is a matrix equation for Pt , where

xt = Ptzt

Satisfies the conditions for optimality derived from the
problem’s Hamiltonian.

Used to translate problem from one domain (estimation) into
another (optimal control).
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Introducing the Problem

Mathematical Structure

Theorem (Duality Correspondence)

The Riccati equation of the filter for the system

xt+1 = Ftxt + wt , zt = Htxt + vt ,

wt ∼ N (0,Pt), vt = 0

is the same as that for the linear regulator of the system

yt−1 = F ′tyt + H ′tut ,

with cost rate
y ′tPtyt
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Introducing the Problem

Extensions

A number of extensions have been made to this duality of
estimation and control.

Theorem (Todorov 2008)

A control problem with dynamics

yt+1 = at(yt) + ut

and cost rate
qt(zt) + kt(at(yt) + ut)

has a dual estimation problem, where wt ∝ e−kt , vt ∝ e−qt .

Here, duality is shown by creating a bijection between the
Hamiltonian-Jacobi-Bellman equations which characterize the
solutions of each problem.
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Introducing the Problem

What is duality?

In these formulations, duality is shown by demonstrating a
relationship between the equations that characterize these
problems’ solutions.

Is that what we mean by duality?

Theorem (Simon and Stubberud, 1970)

The smoothing problem, with observations T > t, given by

xt+1 = Ftxt + wt zt = Htxt + vt x0 = w0

wt ∼ N (0,Pt) vt ∼ N (0,Qt)

is dual (in the convex-analytic sense) to the LQR problem

yt−1 = F ′tyt + H ′tut , yT = H ′TuT

with cost
T∑
t=0

1

2
x ′tPtxt +

1

2
u′tQtut − z ′tut
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Introducing the Problem

Convex Analytic Duality
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Introducing the Problem

PLQ Functions

Does Convex-Analytic duality have an extension similar to
Todorov’s?

Definition

A piecewise linear-quadratic function (Rockafellar, Wets ‘98) is a
function ρ : Rn → R ∪ {∞} of the form

ρU,M(y) = sup
u∈U
{〈u, y〉 − 1

2
〈u,Mu〉}

where U ⊂ Rn is polyhedral and M � 0

The function ρ(y) is said to be coercive if
lim||y ||→∞ ρ(y) =∞.
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Introducing the Problem

PLQ Functions

PLQ functions are attractive for a number of reasons
1 Very general framework for penalty functions

Hard Constraints
`1 penalty
`2 penalty
Elastic net penalty
Huber penalty
Vapnik penalty

2 Possess a common structure amenable to computation
(Aravkin, Burke, Pilloneto 2013).

If a PLQ function ρ is coercive, we can use it to define a density
p(y) ∝ exp[−ρ(y)].
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Introducing the Problem

Example

Huber penalty:

Lδ(x) =

{
1
2 x2 |x | < δ

δ(|x | − 1
2δ) otherwise

Taking U = [−δ, δ] and M = I in the PLQ definition gives the
Huber penalty.

Figure : Huber loss in green, quadratic in blue
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Introducing the Problem

Extended Linear-Quadratic Programming

A control problem of the form

T∑
t=0

1

2
y ′tPtyt + p′tyt + ρt,Ut ,Mt (ut)

yt+1 = Atyt + Btut , y0 = A0u0

is called an Extended Linear-Quadratic Program.

Introduced in context of deterministic and stochastic control
by Rockafellar and Wets in ’90.

Applied to Hydropower scheduling problem by Salinger ’97.

Versatile, still retains attractive computational structure.
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Introducing the Problem

Results

Theorem (B., Casey, Wets)

If wt and vt have a PLQ density

wt ∝ exp[−ρt,Wt ,Mt (y)] vt ∝ exp[−ρt,Vt ,Nt (y)]

with M,N � 0, then the smoothing MAP problem with dynamics

xt+1 = Ftxt + wt , zt = Htxt + vt

is dual in the convex analytic sense to the control problem

yt = F ′tyt+1 + H ′tut , yT = H ′T vT

yt ∈Wt , ut ∈ Vt

with cost
T∑
t=0

1

2
y ′tMtyt +

1

2
u′tNtut − z ′tut
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Introducing the Problem

When N � 0, control objective becomes

T∑
t=0

1

2
y ′tMtyt +

1

2
(ut − N−1

t zt)
′N(ut − N−1

t zt)

System state near 0

Control follows trajectory {N−1(zt)}0
t=T

This result generalizes the classical case, because the normal
distribution is a PLQ density.
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Introducing the Problem

Application to Nonparametric Estimation

Figure : Laplace Penalty
Figure : Nonparametric
Estimation of Laplace
Penalty ρ

Figure : Conjugate of
Nonparametric
Estimation ρ∗
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Introducing the Problem

Performance of Laplacian MAP
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Introducing the Problem

Performance of Data-derived MAP
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Introducing the Problem

Conclusion

Want to generalize classical estimation results to the case of
PLQ case

Attractive computational results exist when noise is assumed
to be normal.

General framework that allows for diverse range of distributions
Still contains structure similar to quadratic case

Estimation and Control Duality still holds in PLQ setting

How can this structure be used to our advantage while
performing computations?
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Introducing the Problem

Thank you for your attention!

For more information see

Log-Concave Duality in Estimation and Control (Working Paper).
Bassett, Casey, Wets. ’16

at math.ucdavis.edu/ ˜rbassett
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Introducing the Problem
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