Duality in Extended Linear-Quadratic Estimation and Control

Robert Bassett

CERMICS Laboratory, École des Ponts ParisTech Department of Mathematics, University of California Davis

March 25th, 2016
SMAI-MODE 2016, Toulouse

Dynamics and Observation Model

Process:

$$
x_{t+1}=F_{t} x_{t}+w_{t}
$$

Measurements:

$$
z_{t}=H_{t} x_{t}+v_{t}
$$

Dynamics and Observation Model

Process:

$$
x_{t+1}=F_{t} x_{t}+w_{t}
$$

Measurements:

$$
z_{t}=H_{t} x_{t}+v_{t}
$$

- $x \in \mathbb{R}^{n}$, a state vector
- $w \in \mathbb{R}^{n}$, random noise
- $z \in \mathbb{R}^{m}$, an observation
- $v \in \mathbb{R}^{m}$, more noise
- H and F are real-valued matrices.

Dynamics and Observation Model

Process:

$$
x_{t+1}=F_{t} x_{t}+w_{t}
$$

Measurements:

$$
z_{t}=H_{t} x_{t}+v_{t}
$$

- $x \in \mathbb{R}^{n}$, a state vector
- $w \in \mathbb{R}^{n}$, random noise
- $z \in \mathbb{R}^{m}$, an observation
- $v \in \mathbb{R}^{m}$, more noise
- H and F are real-valued matrices.

Problem

Given the observed values of z_{0}, \ldots, z_{t}, find an estimate of x_{T} which minimizes some loss function.

Introducing the Problem

Possible cases.
(1) $T<t$. Data Smoothing Problem: Estimate previous state from current measurements.
(2) $T=t$. Filtering Problem: Sequential Estimation of states.
(3) $T>t$. Prediction Problem: Estimate future state from current measurements.

Introducing the Problem

Possible cases.
(1) $T<t$. Data Smoothing Problem: Estimate previous state from current measurements.
(2) $T=t$. Filtering Problem: Sequential Estimation of states.
(3) $T>t$. Prediction Problem: Estimate future state from current measurements.

Example to keep in mind: Autopilot in UAVs.

A drone is equipped with a GPS and accelerometer. Where was it, where is it, and where will it go?

The Classical Case

Classical Assumptions

- Let $\left\{w_{t}\right\},\left\{v_{t}\right\}$ be Gaussian with mean zero.
- The error functional is the distribution of $x_{T} \mid z_{0}, \ldots, z_{t}$.
- This gives the Maximum A Posteriori (MAP) Estimator of x_{T} given z

The Classical Case

Classical Assumptions

- Let $\left\{w_{t}\right\},\left\{v_{t}\right\}$ be Gaussian with mean zero.
- The error functional is the distribution of $x_{T} \mid z_{0}, \ldots, z_{t}$.
- This gives the Maximum A Posteriori (MAP) Estimator of x_{T} given z

Considered by Rudolf Kalman in 1960, who used these assumptions to derive the Kalman Filter.

- Recursive estimator: only keeps track of a posteriori state estimate and covariance matrix
- Requires only matrix multiplication
- Ubiquitous in practice

Mathematical Structure

Central to Kalman's derivation is the following theorem:
Theorem (Kalman, 1960)
The classical MAP problem is dual to the Linear-Quadratic Regulator problem of optimal control, in the sense that there is a bijection between the Riccati equations that characterize their solutions.

Mathematical Structure

Central to Kalman's derivation is the following theorem:

Theorem (Kalman, 1960)

The classical MAP problem is dual to the Linear-Quadratic Regulator problem of optimal control, in the sense that there is a bijection between the Riccati equations that characterize their solutions.

- A Riccati equation is a matrix equation for P_{t}, where

$$
x_{t}=P_{t} z_{t}
$$

- Satisfies the conditions for optimality derived from the problem's Hamiltonian.
- Used to translate problem from one domain (estimation) into another (optimal control).

Mathematical Structure

Theorem (Duality Correspondence)

The Riccati equation of the filter for the system

$$
\begin{array}{rlr}
x_{t+1} & =F_{t} x_{t}+w_{t}, & z_{t}=H_{t} x_{t}+v_{t}, \\
w_{t} & \sim \mathcal{N}\left(0, \mathcal{P}_{t}\right), & v_{t}=0
\end{array}
$$

is the same as that for the linear regulator of the system

$$
y_{t-1}=F_{t}^{\prime} y_{t}+H_{t}^{\prime} u_{t}
$$

with cost rate

$$
y_{t}^{\prime} P_{t} y_{t}
$$

Extensions

A number of extensions have been made to this duality of estimation and control.

Theorem (Todorov 2008)

A control problem with dynamics

$$
y_{t+1}=a_{t}\left(y_{t}\right)+u_{t}
$$

and cost rate

$$
q_{t}\left(z_{t}\right)+k_{t}\left(a_{t}\left(y_{t}\right)+u_{t}\right)
$$

has a dual estimation problem, where $w_{t} \propto e^{-k_{t}}, v_{t} \propto e^{-q_{t}}$.

Extensions

A number of extensions have been made to this duality of estimation and control.

Theorem (Todorov 2008)

A control problem with dynamics

$$
y_{t+1}=a_{t}\left(y_{t}\right)+u_{t}
$$

and cost rate

$$
q_{t}\left(z_{t}\right)+k_{t}\left(a_{t}\left(y_{t}\right)+u_{t}\right)
$$

has a dual estimation problem, where $w_{t} \propto e^{-k_{t}}, v_{t} \propto e^{-q_{t}}$.
Here, duality is shown by creating a bijection between the Hamiltonian-Jacobi-Bellman equations which characterize the solutions of each problem.

What is duality?

In these formulations, duality is shown by demonstrating a relationship between the equations that characterize these problems' solutions.

What is duality?

In these formulations, duality is shown by demonstrating a relationship between the equations that characterize these problems' solutions. Is that what we mean by duality?

What is duality?

In these formulations, duality is shown by demonstrating a relationship between the equations that characterize these problems' solutions. Is that what we mean by duality?

Theorem (Simon and Stubberud, 1970)

The smoothing problem, with observations $T>t$, given by

$$
\begin{aligned}
x_{t+1} & =F_{t} x_{t}+w_{t} & z_{t} & =H_{t} x_{t}+v_{t} \quad x_{0}=w_{0} \\
w_{t} & \sim \mathcal{N}\left(0, \mathcal{P}_{t}\right) & v_{t} & \sim \mathcal{N}\left(0, \mathcal{Q}_{t}\right)
\end{aligned}
$$

is dual (in the convex-analytic sense) to the LQR problem

$$
\begin{gathered}
y_{t-1}=F_{t}^{\prime} y_{t}+H_{t}^{\prime} u_{t}, \quad y_{T}=H_{T}^{\prime} u_{T} \\
\text { with cost } \sum_{t=0}^{T} \frac{1}{2} x_{t}^{\prime} P_{t} x_{t}+\frac{1}{2} u_{t}^{\prime} Q_{t} u_{t}-z_{t}^{\prime} u_{t}
\end{gathered}
$$

Convex Analytic Duality

PLQ Functions

Does Convex-Analytic duality have an extension similar to Todorov's?

PLQ Functions

Does Convex-Analytic duality have an extension similar to Todorov's?

Definition

A piecewise linear-quadratic function (Rockafellar, Wets '98) is a function $\rho: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ of the form

$$
\rho_{U, M}(y)=\sup _{u \in U}\left\{\langle u, y\rangle-\frac{1}{2}\langle u, M u\rangle\right\}
$$

where $U \subset \mathbb{R}^{n}$ is polyhedral and $M \succeq 0$

- The function $\rho(y)$ is said to be coercive if $\lim _{\|y\| \rightarrow \infty} \rho(y)=\infty$.

PLQ Functions

PLQ functions are attractive for a number of reasons
(1) Very general framework for penalty functions

- Hard Constraints
- ℓ_{1} penalty
- ℓ_{2} penalty
- Elastic net penalty
- Huber penalty
- Vapnik penalty
(2) Possess a common structure amenable to computation (Aravkin, Burke, Pilloneto 2013).

PLQ Functions

PLQ functions are attractive for a number of reasons
(1) Very general framework for penalty functions

- Hard Constraints
- ℓ_{1} penalty
- ℓ_{2} penalty
- Elastic net penalty
- Huber penalty
- Vapnik penalty
(2) Possess a common structure amenable to computation (Aravkin, Burke, Pilloneto 2013).
If a PLQ function ρ is coercive, we can use it to define a density $p(y) \propto \exp [-\rho(y)]$.

Example

Huber penalty:

$$
L_{\delta}(x)=\left\{\begin{array}{cc}
\frac{1}{2} x^{2} & |x|<\delta \\
\delta\left(|x|-\frac{1}{2} \delta\right) & \text { otherwise }
\end{array}\right.
$$

Taking $U=[-\delta, \delta]$ and $M=I$ in the PLQ definition gives the Huber penalty.

Figure: Huber loss in green, quadratic in blue

Extended Linear-Quadratic Programming

A control problem of the form

$$
\begin{aligned}
& \sum_{t=0}^{T} \frac{1}{2} y_{t}^{\prime} P_{t} y_{t}+p_{t}^{\prime} y_{t}+\rho_{t, U_{t}, M_{t}}\left(u_{t}\right) \\
& y_{t+1}=A_{t} y_{t}+B_{t} u_{t}, \quad y_{0}=A_{0} u_{0}
\end{aligned}
$$

is called an Extended Linear-Quadratic Program.

- Introduced in context of deterministic and stochastic control by Rockafellar and Wets in '90.
- Applied to Hydropower scheduling problem by Salinger '97.
- Versatile, still retains attractive computational structure.

Results

Theorem (B., Casey, Wets)

If w_{t} and v_{t} have a $P L Q$ density

$$
w_{t} \propto \exp \left[-\rho_{t, W_{t}, M_{t}}(y)\right] \quad v_{t} \propto \exp \left[-\rho_{t, V_{t}, N_{t}}(y)\right]
$$

with $M, N \succeq 0$, then the smoothing MAP problem with dynamics

$$
x_{t+1}=F_{t} x_{t}+w_{t}, \quad z_{t}=H_{t} x_{t}+v_{t}
$$

is dual in the convex analytic sense to the control problem

$$
\begin{gathered}
y_{t}=F_{t}^{\prime} y_{t+1}+H_{t}^{\prime} u_{t}, \quad y_{T}=H_{T}^{\prime} v_{T} \\
y_{t} \in W_{t}, \quad u_{t} \in V_{t} \\
\text { with cost } \sum_{t=0}^{T} \frac{1}{2} y_{t}^{\prime} M_{t} y_{t}+\frac{1}{2} u_{t}^{\prime} N_{t} u_{t}-z_{t}^{\prime} u_{t}
\end{gathered}
$$

When $N \succ 0$, control objective becomes

$$
\sum_{t=0}^{T} \frac{1}{2} y_{t}^{\prime} M_{t} y_{t}+\frac{1}{2}\left(u_{t}-N_{t}^{-1} z_{t}\right)^{\prime} N\left(u_{t}-N_{t}^{-1} z_{t}\right)
$$

When $N \succ 0$, control objective becomes

$$
\sum_{t=0}^{T} \frac{1}{2} y_{t}^{\prime} M_{t} y_{t}+\frac{1}{2}\left(u_{t}-N_{t}^{-1} z_{t}\right)^{\prime} N\left(u_{t}-N_{t}^{-1} z_{t}\right)
$$

- System state near 0
- Control follows trajectory $\left\{N^{-1}\left(z_{t}\right)\right\}_{t=T}^{0}$

This result generalizes the classical case, because the normal distribution is a PLQ density.

Application to Nonparametric Estimation

Figure: Laplace Penalty

Figure: Nonparametric Estimation of Laplace Penalty ρ

Figure: Conjugate of Nonparametric Estimation ρ^{*}

Performance of Laplacian MAP

Estimation of 100 states \& 100 mts (Laplace Noise, Laplace Penalty)

Performance of Data-derived MAP

Conclusion

- Want to generalize classical estimation results to the case of PLQ case
- Attractive computational results exist when noise is assumed to be normal.
- General framework that allows for diverse range of distributions
- Still contains structure similar to quadratic case
- Estimation and Control Duality still holds in PLQ setting
- How can this structure be used to our advantage while performing computations?

Thank you for your attention!

For more information see

Log-Concave Duality in Estimation and Control (Working Paper). Bassett, Casey, Wets. '16
at math.ucdavis.edu/ ~rbassett

References

- Generalized Linear-Quadratic Problems of Deterministic and Stochastics Optimal Control in Discrete Time. Rockafellar and Wets. '90.
- A New Approach to Linear Filtering and Prediction Problems. Kalman. '60
- Sparse/Robust Estimation and Kalman Smoothing with Nonsmooth Log-Concave Densities: Modeling, Computation, and Theory, Aravkin, Burke, Pillonetto. '13
- Duality of Linear Estimation and Control. Simon and Stubberud.
- General Duality Between Optimal Control and Estimation. Todorov. '08
- Variational Analysis. Rockafellar and Wets. '98

