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Circular restricted three-body problem (CRTBP)

The CRTBP consists of three gravitationally interacting bodies, P1, P2,
and P3, whose masses are denoted by m1, m2, and m3, respectively, such
that

1 the third mass m3 is so small that its gravitational influence on the
other two is negligible;

2 the two primaries, P1 and P2, move on circular orbits around their
common centre of mass.

The length is normalized by d∗ > 0, the
distance between P1 and P2.

If µ = m2/(m1 +m2), r1 = (−µ,0,0) and
r2 = (1−µ,0,0) denote the position of P1

and P2, respectively.

Rotating frame for the CRTBP
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Dynamics of the CRTBP

r ∈ R3 := position vector, v ∈ R3 :=velocity vector,
m ∈ R+ := mass , X ⊂ Rn := the admissible set of x = (r ,v ,m).

The controlled equation for the CRTBP is

Σ :


ṙ(t) = v(t),

v̇(t) = h(v(t)) +g(r(t)) + τ(t)
m(t)

,

ṁ(t) =−β‖τ(t)‖,

h(v) =

 0 2 0
−2 0 0
0 0 0

v , g(r) =

 1 0 0
0 1 0
0 0 0

 r− 1−µ

‖r − r1‖3
(r−r1)− µ

‖r − r2‖3
(r−r2).

β ≥ 0 is a constant and τ ∈R3 is the thrust (or control) vector valued in a Euclidean ball

Bτ = {τ ∈ R3 | ‖ τ ‖≤ τmax}, τmax is a positive constant.
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Dynamics of the CRTBP

Let (ρ,ω) ∈ [0,1]×S2 such that

ρ = ‖ τ ‖/τmax , τ = ρτmaxω.

We rewrite the system Σ as

Σ : ẋ(t) = f (x(t),ρ(t),ω(t)) = f0(x(t)) + ρ(t)f1(x(t),ω(t)),

where

f0(x) =

 v
h(v) +g(r)

0

 , f1(x ,ω) =

 0
τmax
m ω

−βτmax

 .
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L1-Minimization

Define the constraint submanifold of target by

M = {x ∈X | φ(x) = 0},

where φ : X → Rl is twice continuously differentiable.

L1-minimization

ẋ(t) = f (x(t),ρ(t),ω(t)), x(t) ∈X ⊂ Rn, (ρ(t),ω(t)) ∈U ,

x(0) = x0, x(tf ) ∈M , tf > 0 is fixed,

∫ tf

0
ρ(t)dt→min.
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Pontryagin Maximum Principle (PMP)

Pontragin maximum prinicple

Let u = (ρ,ω). Every minimizing trajectory x(·) is the projection of an
extremal (x(·),p(·),p0,u(·)) solution of

ẋ(t) =
∂H

∂p
, ṗ(t) =−∂H

∂x
, H(x ,p,p0,u) = max

η∈U
H(x ,p,p0,η),

where H(x ,p,p0,u) = 〈p, f (x ,u)〉+p0ρ.

An extremal is said normal if p0 6= 0, and abnormal if p0 = 0 (abnormal
extremals have been ruled out by Caillau et al. (2012)).

In the normal case, the maximum Hamiltonian can be written as

H(x ,p) = H0(x ,p) + ρ(x ,p)H1(x ,p),

where H0 = 〈p, f0(x)〉 and H1 = 〈p, f1(x ,ω(x ,p))〉−1.
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Bang-bang & Singular controls

Let p = (pr ,pv ,pm) such that

H = 〈pr ,v〉+ 〈pv ,h(v) +g(r)〉︸ ︷︷ ︸
H0

+ ρ(〈pv ,ω/m〉−βpm)︸ ︷︷ ︸
H1

.

The maximum condition implies

ω = pv/‖pv‖, if ‖pv‖ 6= 0,

and

ρ =

{
1, if H1 > 0,

0, if H1 < 0,
=⇒ norm of control is bang-bang.

If H1 has only isolated zeros on [0,tf ], the corresponding extremal is called a
nonsingular one; If H1 ≡ 0 on [0,tf ], the corresponding extremal is called a singular one.
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Singular extremals and chattering phenomena

Kelley (1962)

ρ appears in dqH1
dtq if q is even, and q/2 is the order of the singular extremals.

The order of a singular extremal (x(·),p(·)) on [t1,t2]⊆ [0,tf ] with t1 < t2 is two, i.e.,
d4H1

dt4 = αρ + β with α 6= 0. Kelley’s second order necessary condition is α ≤ 0.

S = {(x ,p) ∈ T ∗X | H1 =
dH1

dt
=

d2H1

dt2
=

d3H1

dt3
= αρ + β = 0, α ≤ 0}.

Theorem (Zelikin and Borisov, 1994 & 2003)

Let int(S ) be the interior of S . Then, given every point (x ,p) ∈ int(S ),
there exists a one parameter family of chattering solutions to the PMP passing
through the point (x ,p) and another one parameter family of chattering
solutions to the PMP coming out from the point (x ,p).
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Sufficient Conditions for Optimality

Zheng Chen1 L1-Optimality Conditions



Outline Definitions and notations Necessary conditions Sufficient Conditions Applications

Definition of local optimality

Local optimality

Given a fixed final time tf > 0, an extremal trajectory x̄(·) ∈X associated with
the extremal control ū(·) = (ρ̄(·), ω̄(·)) in U on [0,tf ] is said to realize a
strong-local optimality in C0-topology if there exists an open neighborhood
Wx ⊆X of x̄(·) in C0-topology such that for every admissible controlled
trajectory x(·) 6≡ x̄(·) in Wx associated with the measurable control
u(·) = (ρ(·),ω(·)) in U on [0,tf ] with the boundary conditions x(0) = x̄(0)
and x(tf ) ∈M , there holds∫ tf

0
ρ(t)dt ≥

∫ tf

0
ρ̄(t)dt.

We say it realizes a strict strong-local optimality if the strict inequality holds.
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Parameterized family of extremals

Parameterized family of extremals

Given the reference extremal (x̄(·), p̄(·)) on [0,tf ], let P ⊂ T ∗x0
X be an open

neighborhood of p̄(0), we say the subset

F = {(x(t),p(t)) ∈ T ∗X | (x(t),p(t)) = et
~H(x̄(0),p0), t ∈ [0,tf ], p0 ∈P},

a p0-parameterized family of extremals around the reference one.

Π : T ∗X →X , (x ,p) 7→ x .
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Conjugate point and fold singularity

Smooth Fold Singularity

Agrachev, A. A.; Sachkov, Y. L. (2004)

Broken Fold Singularity

Schattler, H.; Noble, J. (2012)
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No-fold conditions

Let (x(·,p0),p(·,p0)) := et
~H(x̄(0),p0) on [0,tf ] and let δ (t) := det

[
∂x
∂p0

(t, p̄0)
]
.

No-fold condition on smooth bang arcs

δ (·) 6= 0 on (ti ,ti+1). (ti is the switching time, i.e., 0 = t0 < t1 < · · ·< tk < tk+1 = tf .)

No-fold condition at switching times

δ (ti−)δ (ti+) > 0.

The no-fold conditions were established in

“L1-Minimization for Mechanical Systems” to appear in SIAM Journal on Control and
Optimization (with J.-B. Caillau and Y. Chitour).
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Sufficient conditions for l = n

Perturbed Lagrangian submanifold L (Agrachev et al. (2004))

If (x(·, p̄0),p(·, p̄0)) on (0,tf ] does not contain conjugate points, we are able to
construct a perturbed Lagrangian submanifold L ∈ T ∗X such that

1 the projection Π of L onto its image is a local diffeomorphism; and

2 the domain Π(L ) is an open neighborhood of the extremal trajectory
x(·, p̄0) = Π(x(·, p̄0),p(·, p̄0)) on [0,tf ] in C0-topology.

Theorem (Agrachev et al., 2004)

Given a bang-bang extremal (x̄(t), p̄(t)) on [0,tf ], if δ (·) 6= 0 on (ti ,ti+1) and if
δ (ti−)δ (ti+) > 0, the extremal trajectory x̄(·) on [0,tf ] realizes a strict minimum cost
among all the admissible controlled trajectories x(·) on [0,tf ] in the domain Π(L ) with
the same endpoints: x̄(0) = x(0) and x̄(tf ) = x(tf ).

Recall that the Poincaré-Cartan form pdx−Hdt is exact on L .
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Sufficient conditions for l < n

If the final point is not fixed but varies on
M , in addition to the two no-fold
conditions, an extra second-order condition
is required to guarantee that every
admissible controlled trajectory x∗(·) ∈Wx

on [0,tf ] with the boundary conditions
x0 = x∗(0) and x∗(tf ) ∈M \{x̄(tf )} has a
higher cost than the reference one.

γ(t,p0) = et
~H(x̄(0),p0)
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Sufficient conditions for l < n

Define ν̄ ∈ (Rl )∗ such that p̄(tf ) = ν̄dφ(x̄(tf )).

ζ
T
{

∂p
∂p0

(tf , p̄0)
[

∂x
∂p0

(tf , p̄0)
]−1
− ν̄d2φ(x̄(tf ))

}
ζ>0 for every ζ ∈ Tx̄(tf )M .

This conditions was established in

Z. Chen, “L1-optimality conditions for the circular restricted three-body
problem”, arXiv, 2015.

Theorem

In the case of l < n, given the extremal (x̄(·), p̄(·)) on [0,tf ] such that the no-fold
conditions are satisfied, the reference extremal realizes a strong local optimum if there
holds

∂pT (tf , p̄0)

∂p0

[
∂x(tf , p̄0)

∂p0

]−1

− ν̄d2
φ(x̄(tf ))�0,

on the tangent space Tx̄(tf )M .
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Numerical implementation

Differential equations:[
d
dt

∂x
∂p0

(t, p̄0)

d
dt

∂pT

∂p0
(t, p̄0)

]
=

[
Hpx Hpp

−Hxx −Hxp

][ ∂x
∂p0

(t, p̄0)
∂pT

∂p0
(t, p̄0)

]
.

Jacobi fields jump at ti :

∂x

∂p0
(ti+, p̄0) =

∂x

∂p0
(ti−, p̄0)−∆ρi

∂H1

∂p

dti (p̄0)

dp0
.

∂pT

∂p0
(ti+, p̄0) =

∂pT

∂p0
(ti−, p̄0) + ∆ρi

∂H1

∂x

dti (p̄0)

dp0

Initial condition:

∂x

∂p0
(0, p̄0) = 0 and

∂pT

∂p0
(0, p̄0) = In.
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Fuel-optimal problem with variable endpoints

Denote the boundary constraint manifolds by

Mi = {x ∈X | φi (x) = 0} and Mf = {x ∈X | φf (x) = 0},

where φi : X → Rli (0 < li < n) and φf : X → Rlf (0 < lf < n).

Fuel-optimal problem with variable endpoints

β > 0, tf > 0, x(0) ∈Mi , x(tf )Mf ,

ẋ(t) = f0(x(t)) + f1(x(t),ω(t)), (ρ(t),ω(t)) ∈ [0,1]×S2,

∫ tf

0
ρ(t)dt→min.

∫ tf

0
ρ(t)dt→min =⇒ m(tf )→max.
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Test sufficient conditions backward

Why to test sufficient conditions backward for fuel-optimal problem?

For fuel-optimal problem, m is a state instead of a constant parameter.

ρ is a piece-wise constant =⇒ d
dt

∂m
∂p0

(·, p̄0)≡ 0 on (ti ,ti+1).

m(0) is fixed =⇒ ∂m
∂p0

(0, p̄0) = 0.

It is concluded that det
[

∂x
∂p0

(t, p̄0)
]

= 0 on [0,t1].
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Parameterized family of extremals

Define the Lagrangian submanifold

Lf := {(x ,p) ∈ T ∗X | x ∈Mf , p ⊥ TxMf }.

Locally, there exists a diffeomorphism F : Lf → (Rn)∗ such that for every (x ,p) ∈Lf

there exists one and only one q ∈ (Rn)∗ with F (x ,p) = q.

Parameterized family of extremals

Let q̄ := F−1(x̄(tf ), p̄(tf )). Given the reference extremal (x̄(·), p̄(·)) = e(t−tf )~H(F−1(q̄))
on [0,tf ], let Q ⊂Lf be a sufficiently small open neighborhood of q̄, we say the subset

Fq = {(x(t),p(t)) ∈ T ∗X | (x(t),p(t)) = e(t−tf )~H(F−1(q)), t ∈ [0,tf ], q ∈ F (Q)},

a q-parameterized family of extremals around the reference one.
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Sufficient conditions for fuel-optimal problem

Let (x(t,q),p(t,q)) := e(t−tf )~H(F−1(q)) and δq(t) = det
[

∂x
∂q (t, q̄)

]
.

No-fold condition on smooth bang arcs

δq(·) 6= 0 on (ti ,ti+1).

No-fold condition at switching times

δq(ti−)δq(ti+) > 0.

The third condition

ζ
T
{

∂p
∂q (0, q̄)

[
∂x
∂q (0, q̄)

]−1
−ν id

2φi (x̄(0))
}

ζ<0 for every ζ ∈ Tx̄(0)Mi .
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Numerical Applications
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Conjugate point test: CRTBP (mass constant model with variable target)
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Boundary conditions
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Conjugate point test: CRTBP (mass constant model with variable target)
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δ (·) 6= 0 on (0,tf ] and
δ (ti−)δ (ti+) > 0.

CT
{

∂pT (tf , p̄0)

∂p0

[
∂x(tf , p̄0)

∂p0

]−1

−ν̄d2
φ(x̄(tf ))

}
C ≈ 0.529 > 0.
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Focal point test: case A (mass varying model with fixed initial point)
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Initial state is fixed, while the
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circular orbit of the Moon.
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Focal point test: case A (mass varying model with fixed initial point)

−0.5 0 0.5 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

X

Y

Earth

Moon

δq(·) 6= 0 on [0,tf ) and
δq(t−i )δq(ti+) > 0, ensuring
the optimum of the
computed trajectory.
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Focal point test: case B (mass varying model with variable initial point)

——a non-optimal example
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Focal point test: case B (mass varying model with variable initial point)

——a non-optimal example

−0.5

0

0.5

1 −1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

x 10
−6

Y

X

Z

Initial orbit

L1

Halo orbit

Earth

Moon

One focal point occurs at a
switching time and another
one occurs on a burn arc.

0 5 10 15 20 25
−2

−1

0

1

2

3

4

Time (day)

sg
n
(δ
(t
))

×
|δ
(t
)|
1/
12

 

 

Maximum-thrust arcs

Switching time

Zero-thrust arcs

Focal time
Focal time

Zheng Chen1 L1-Optimality Conditions



Outline Definitions and notations Necessary conditions Sufficient Conditions Applications

Focal point test: case C (the same boundary conditions as case B)
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Focal point test: case C (the same boundary conditions as case B)
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δq(ti−)δq(ti+) > 0, ensuring
the optimum of the
computed trajectory.
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Thank you for your attention!

Email: zheng.chen@math.u-psud.fr
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