Necessary conditions

Sufficient Conditions

Applications 00000000

L¹-Optimality Conditions for the Circular Restricted Three-Body Problem

$\mathbf{Zheng}\ \mathbf{Chen}^1$

adjoint work with

Jean-Baptiste Caillau² and Yacine Chitour¹

- 1. University Paris-Sud & CNRS
- 2. University Bourgogne & CNRS / INRIA

Journées SMAI-MODE 2016

March 23-25, 2016 Toulouse (France)

Outline	Definitions and notations	Necessary conditions	Sufficient Conditions	Applications 00000000
Outline				

Outline

Definitions and notations

- Circular restricted three-body problem
- L¹-minimization

Necessary conditions

- Pontryagin Maximum Principle
- Singular solutions and chattering phenomena

3 Sufficient Conditions

- Field of extremals
- No-fold conditions
- Sufficient conditions
- Focal point tests

4 Applications

- Conjugate point test
- Focal point test

The CRTBP consists of three gravitationally interacting bodies, P_1 , P_2 , and P_3 , whose masses are denoted by m_1 , m_2 , and m_3 , respectively, such that

- the third mass m_3 is so small that its gravitational influence on the other two is negligible;
- 2 the two primaries, P_1 and P_2 , move on circular orbits around their common centre of mass.

The length is normalized by $d_* > 0$, the distance between P_1 and P_2 .

If $\mu = m_2/(m_1 + m_2)$, $r_1 = (-\mu, 0, 0)$ and $r_2 = (1 - \mu, 0, 0)$ denote the position of P_1 and P_2 , respectively.

Rotating frame for the CRTBP

Outline	Definitions and notations ○●○○	Necessary conditions	Sufficient Conditions	Applications 00000000
Dynamic	s of the CRTBP			

$$\begin{array}{ll} r \in \mathbb{R}^3 := \text{position vector}, & v \in \mathbb{R}^3 := \text{velocity vector}, \\ m \in \mathbb{R}_+ := \text{mass}, & \mathscr{X} \subset \mathbb{R}^n := \text{the admissible set of } x = (r, v, m) \end{array}$$

The controlled equation for the CRTBP is

$$\Sigma : \begin{cases} \dot{r}(t) = v(t), \\ \dot{v}(t) = h(v(t)) + g(r(t)) + \frac{\tau(t)}{m(t)}, \\ \dot{m}(t) = -\beta \|\tau(t)\|, \end{cases}$$
$$h(v) = \begin{bmatrix} 0 & 2 & 0 \\ -2 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} v, \ g(r) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} r - \frac{1-\mu}{\|r-r_1\|^3}(r-r_1) - \frac{\mu}{\|r-r_2\|^3}(r-r_2).$$

 $\beta \ge 0$ is a constant and $\tau \in \mathbb{R}^3$ is the thrust (or control) vector valued in a Euclidean ball $\mathscr{B}_{\tau} = \{\tau \in \mathbb{R}^3 \mid \parallel \tau \parallel \le \tau_{\max}\}, \ \tau_{\max} \text{ is a positive constant.}$

/⊒ ► < ∃ ►

Outline	Definitions and notations 00●0	Necessary conditions	Sufficient Conditions	Applications 00000000
Dynamics	s of the CRTBP			

Let $(
ho,\omega)\in [0,1] imes \mathbb{S}^2$ such that

$$\rho = \parallel \tau \parallel / \tau_{max}, \quad \tau = \rho \tau_{max} \omega.$$

We rewrite the system $\boldsymbol{\Sigma}$ as

 $\Sigma: \dot{x}(t) = f(x(t), \rho(t), \omega(t)) = f_0(x(t)) + \rho(t)f_1(x(t), \omega(t)),$

where

$$f_0(\mathbf{x}) = \begin{pmatrix} \mathbf{v} \\ h(\mathbf{v}) + g(\mathbf{r}) \\ 0 \end{pmatrix}, \quad f_1(\mathbf{x}, \boldsymbol{\omega}) = \begin{pmatrix} \mathbf{0} \\ \frac{\tau_{\max}}{m} \boldsymbol{\omega} \\ -\beta \tau_{\max} \end{pmatrix}.$$

< ∃ →

Outline	Definitions and notations ○○○●	Necessary conditions	Sufficient Conditions	Applications 00000000
L ¹ -Minim	nization			

Define the constraint submanifold of target by

$$\mathscr{M} = \{ \boldsymbol{x} \in \mathscr{X} \mid \boldsymbol{\phi}(\boldsymbol{x}) = \boldsymbol{0} \},\$$

where $\phi : \mathscr{X} \to \mathbb{R}^{I}$ is twice continuously differentiable.

L ¹ -minimization						
	$\dot{x}(t) = f(x(t))$	$, ho(t),\omega(t)),$	$x(t)\in\mathscr{X}\subset\mathbb{R}^n$,	$(ho(t),\omega(t))\in \mathscr{U},$		
	$x(0)=x_0,$	$x(t_f)\in \mathscr{M}$,	$t_f > 0$ is fixed,			
$\int_0^{t_f} ho(t) dt o {\sf min}.$						

- **□** ► < **□** ►

Definitions	and	

Pontryagin Maximum Principle (PMP)

Pontragin maximum prinicple

Let $u = (\rho, \omega)$. Every minimizing trajectory $x(\cdot)$ is the projection of an extremal $(x(\cdot), p(\cdot), p^0, u(\cdot))$ solution of

$$\dot{x}(t) = \frac{\partial H}{\partial p}, \quad \dot{p}(t) = -\frac{\partial H}{\partial x}, \quad H(x, p, p^0, u) = \max_{\eta \in \mathscr{U}} H(x, p, p^0, \eta),$$

where $H(x, p, p^0, u) = \langle p, f(x, u) \rangle + p^0 \rho$.

An extremal is said normal if $p^0 \neq 0$, and abnormal if $p^0 = 0$ (abnormal extremals have been ruled out by Caillau *et al.* (2012)).

In the normal case, the maximum Hamiltonian can be written as

$$H(x,p) = H_0(x,p) + \rho(x,p)H_1(x,p),$$

where $H_0 = \langle p, f_0(x) \rangle$ and $H_1 = \langle p, f_1(x, \omega(x, p)) \rangle - 1$.

Outline	Definitions and notations	Necessary conditions ○●○	Sufficient Conditions	Applications 00000000
Bang-b	ang & Singular con	trols		
	<i>,</i> , , , ,			

Let $p = (p_r, p_v, p_m)$ such that

$$H = \underbrace{\langle p_r, v \rangle + \langle p_v, h(v) + g(r) \rangle}_{H_0} + \rho \underbrace{\langle \langle p_v, \omega/m \rangle - \beta p_m \rangle}_{H_1}.$$

The maximum condition implies

$$\boldsymbol{\omega} = \boldsymbol{p}_{\boldsymbol{v}} / \| \boldsymbol{p}_{\boldsymbol{v}} \|, \text{ if } \| \boldsymbol{p}_{\boldsymbol{v}} \| \neq \boldsymbol{0},$$

and

$$\rho = \begin{cases} 1, \text{ if } H_1 > 0, \\ 0, \text{ if } H_1 < 0, \end{cases} \implies \text{ norm of control is bang-bang.}$$

If H_1 has only isolated zeros on $[0, t_f]$, the corresponding extremal is called a nonsingular one; If $H_1 \equiv 0$ on $[0, t_f]$, the corresponding extremal is called a singular one.

Outline	Definitions and notations	Necessary conditions ○○●	Sufficient Conditions	Applications 00000000
Singular	extremals and chatt	ering phenomena		

Kelley (1962)

 ρ appears in $\frac{d^{q}H_{1}}{dt^{q}}$ if q is even, and q/2 is the order of the singular extremals.

The order of a singular extremal $(x(\cdot), p(\cdot))$ on $[t_1, t_2] \subseteq [0, t_f]$ with $t_1 < t_2$ is two, i.e., $\frac{d^4H_1}{dt^4} = \alpha \rho + \beta$ with $\alpha \neq 0$. Kelley's second order necessary condition is $\alpha \leq 0$.

$$\mathscr{S} = \{(x, p) \in T^*\mathscr{X} \mid H_1 = \frac{dH_1}{dt} = \frac{d^2H_1}{dt^2} = \frac{d^3H_1}{dt^3} = \alpha \rho + \beta = 0, \ \alpha \leq 0\}.$$

Theorem (Zelikin and Borisov, 1994 & 2003)

Let $int(\mathscr{S})$ be the interior of \mathscr{S} . Then, given every point $(x,p) \in int(\mathscr{S})$, there exists a one parameter family of chattering solutions to the PMP passing through the point (x,p) and another one parameter family of chattering solutions to the PMP coming out from the point (x,p).

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline	Definitions and notations	Necessary conditions	Sufficient Conditions	Applications

Sufficient Conditions for Optimality

Outline Definitions and notations

Necessary conditions

Sufficient Conditions

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Applications 0000000

Definition of local optimality

Local optimality

Given a fixed final time $t_f > 0$, an extremal trajectory $\bar{\mathbf{x}}(\cdot) \in \mathscr{X}$ associated with the extremal control $\bar{\mathbf{u}}(\cdot) = (\bar{\rho}(\cdot), \bar{\omega}(\cdot))$ in \mathscr{U} on $[0, t_f]$ is said to realize a strong-local optimality in C^0 -topology if there exists an open neighborhood $\mathscr{W}_{\mathbf{x}} \subseteq \mathscr{X}$ of $\bar{\mathbf{x}}(\cdot)$ in C^0 -topology such that for every admissible controlled trajectory $\mathbf{x}(\cdot) \neq \bar{\mathbf{x}}(\cdot)$ in $\mathscr{W}_{\mathbf{x}}$ associated with the measurable control $\mathbf{u}(\cdot) = (\rho(\cdot), \omega(\cdot))$ in \mathscr{U} on $[0, t_f]$ with the boundary conditions $\mathbf{x}(0) = \bar{\mathbf{x}}(0)$ and $\mathbf{x}(t_f) \in \mathscr{M}$, there holds

$$\int_0^{t_f}
ho(t) dt \geq \int_0^{t_f} ar
ho(t) dt.$$

We say it realizes a strict strong-local optimality if the strict inequality holds.

Dutline	Definitions	and	notations	

Necessary conditions

Sufficient Conditions

Applications 0000000

Parameterized family of extremals

Parameterized family of extremals

Given the reference extremal $(\bar{x}(\cdot), \bar{p}(\cdot))$ on $[0, t_f]$, let $\mathscr{P} \subset T^*_{x_0} \mathscr{X}$ be an open neighborhood of $\bar{p}(0)$, we say the subset

$$\mathscr{F} = \{(x(t),p(t)) \in T^*\mathscr{X} \mid (x(t),p(t)) = e^{t\vec{H}}(\bar{x}(0),p_0), t \in [0,t_f], p_0 \in \mathscr{P}\},$$

a p_0 -parameterized family of extremals around the reference one.

$\Pi: T^*\mathscr{X} \to \mathscr{X}, \ (\boldsymbol{x}, \boldsymbol{p}) \mapsto \boldsymbol{x}.$

Outline Definitions and notations

Necessary conditions

Sufficient Conditions

Applications 0000000

Conjugate point and fold singularity

Smooth Fold Singularity

Agrachev, A. A.; Sachkov, Y. L. (2004)

Broken Fold Singularity

Schattler, H.; Noble, J. (2012)

____ ▶

Outline	Definitions and notations	Necessary conditions	Sufficient Conditions	Applications 00000000
No fold	conditions			

Let
$$(x(\cdot, p_0), p(\cdot, p_0)) := e^{t\vec{H}}(\bar{x}(0), p_0)$$
 on $[0, t_f]$ and let $\delta(t) := \det \left[\frac{\partial x}{\partial p_0}(t, \bar{p}_0)\right]$

No-fold condition on smooth bang arcs

 $\delta(\cdot) \neq 0$ on (t_i, t_{i+1}) . $(t_i \text{ is the switching time, i.e., } 0 = t_0 < t_1 < \cdots < t_k < t_{k+1} = t_f$.)

No-fold condition at switching times

 $\delta(t_i-)\delta(t_i+)>0.$

The no-fold conditions were established in

"L¹-Minimization for Mechanical Systems" to appear in SIAM Journal on Control and Optimization (with J.-B. Caillau and Y. Chitour).

- 4 同 ト 4 ヨ ト 4 ヨ ト

Outline	Definitions and notations	Necessary conditions	Sufficient Conditions	Application

Sufficient conditions for l = n

Perturbed Lagrangian submanifold $\mathscr{L}(Agrachev \ et \ al. \ (2004))$

If $(x(\cdot, \bar{p}_0), p(\cdot, \bar{p}_0))$ on $(0, t_f]$ does not contain conjugate points, we are able to construct a perturbed Lagrangian submanifold $\mathscr{L} \in T^*\mathscr{X}$ such that

- **(**) the projection Π of \mathscr{L} onto its image is a local diffeomorphism; and
- We have a straight of the extremal trajectory x(·, p
 ₀) = Π(x(·, p
 ₀), p(·, p
 ₀)) on [0, t_f] in C⁰-topology.

Theorem (Agrachev et al., 2004)

Given a bang-bang extremal $(\bar{x}(t), \bar{p}(t))$ on $[0, t_f]$, if $\delta(\cdot) \neq 0$ on (t_i, t_{i+1}) and if $\delta(t_i-)\delta(t_i+) > 0$, the extremal trajectory $\bar{x}(\cdot)$ on $[0, t_f]$ realizes a strict minimum cost among all the admissible controlled trajectories $x(\cdot)$ on $[0, t_f]$ in the domain $\Pi(\mathscr{L})$ with the same endpoints: $\bar{x}(0) = x(0)$ and $\bar{x}(t_f) = x(t_f)$.

Recall that the Poincaré-Cartan form pdx - Hdt is exact on \mathscr{L} .

- 4 同 6 4 日 6 4 日 6

Outline	Definitions	and	notations

Necessary conditions

Sufficient Conditions

Applications 0000000

Sufficient conditions for l < n

If the final point is not fixed but varies on \mathscr{M} , in addition to the two no-fold conditions, an extra second-order condition is required to guarantee that every admissible controlled trajectory $x_*(\cdot) \in \mathscr{W}_x$ on $[0, t_f]$ with the boundary conditions $x_0 = x_*(0)$ and $x_*(t_f) \in \mathscr{M} \setminus \{\bar{x}(t_f)\}$ has a higher cost than the reference one.

Outline Definitions and notations Necessary conditions	Sufficient Conditions	Applications 00000000

Sufficient conditions for l < n

Define $\bar{v} \in (\mathbb{R}^l)^*$ such that $\bar{p}(t_f) = \bar{v} d\phi(\bar{x}(t_f))$.

$$\zeta^{T} \Big\{ \frac{\partial \rho}{\partial \rho_{0}}(t_{f}, \bar{\rho}_{0}) \left[\frac{\partial x}{\partial \rho_{0}}(t_{f}, \bar{\rho}_{0}) \right]^{-1} - \bar{v} d^{2} \phi(\bar{x}(t_{f})) \Big\} \zeta > 0 \text{ for every } \zeta \in T_{\bar{x}(t_{f})} \mathscr{M}.$$

This conditions was established in

Z. Chen, "L1-optimality conditions for the circular restricted three-body problem", arXiv, 2015.

Theorem

In the case of l < n, given the extremal $(\bar{x}(\cdot), \bar{p}(\cdot))$ on $[0, t_f]$ such that the no-fold conditions are satisfied, the reference extremal realizes a strong local optimum if there holds

$$\frac{\partial p^{T}(t_{f},\bar{p}_{0})}{\partial p_{0}}\left[\frac{\partial x(t_{f},\bar{p}_{0})}{\partial p_{0}}\right]^{-1}-\bar{v}d^{2}\phi(\bar{x}(t_{f}))\succ 0,$$

on the tangent space $T_{\bar{x}(t_f)}\mathcal{M}$.

Outline	Definitions and notations	Necessary conditions	Sufficient Conditions	Applicatio
Numerio	cal implementation			

Differential equations:

$$\begin{bmatrix} \frac{d}{dt} \frac{\partial x}{\partial \rho_0}(t, \bar{\rho}_0) \\ \frac{d}{dt} \frac{\partial p^T}{\partial \rho_0}(t, \bar{\rho}_0) \end{bmatrix} = \begin{bmatrix} H_{px} & H_{pp} \\ -H_{xx} & -H_{xp} \end{bmatrix} \begin{bmatrix} \frac{\partial x}{\partial \rho_0}(t, \bar{\rho}_0) \\ \frac{\partial p^T}{\partial \rho_0}(t, \bar{\rho}_0) \end{bmatrix}.$$

Jacobi fields jump at t_i :

$$\frac{\partial x}{\partial p_0}(t_i+,\bar{p}_0) = \frac{\partial x}{\partial p_0}(t_i-,\bar{p}_0) - \Delta p_i \frac{\partial H_1}{\partial p} \frac{dt_i(\bar{p}_0)}{dp_0}.$$
$$\frac{\partial p^T}{\partial p_0}(t_i+,\bar{p}_0) = \frac{\partial p^T}{\partial p_0}(t_i-,\bar{p}_0) + \Delta p_i \frac{\partial H_1}{\partial x} \frac{dt_i(\bar{p}_0)}{dp_0}.$$

Initial condition:

$$\frac{\partial x}{\partial p_0}(0,\bar{p}_0) = 0 \text{ and } \frac{\partial p^T}{\partial p_0}(0,\bar{p}_0) = I_n.$$

<ロ> <同> <同> < 回> < 回>

æ

Outline	Definitions and notations	Necessary conditions	Sufficient Conditions	A
			000000000000000000000000000000000000000	

oplications

Fuel-optimal problem with variable endpoints

Denote the boundary constraint manifolds by

$$\mathscr{M}_i = \{x \in \mathscr{X} \mid \phi_i(x) = 0\} \text{ and } \mathscr{M}_f = \{x \in \mathscr{X} \mid \phi_f(x) = 0\},\$$

where $\phi_i : \mathscr{X} \to \mathbb{R}^{l_i} \ (0 < l_i < n)$ and $\phi_f : \mathscr{X} \to \mathbb{R}^{l_f} \ (0 < l_f < n)$.

Fuel-optimal problem with variable endpoints

$$\beta > 0, \quad t_f > 0, \quad x(0) \in \mathscr{M}_i, \quad x(t_f) \mathscr{M}_f,$$

$$\dot{x}(t) = f_0(x(t)) + f_1(x(t), \omega(t)), \quad (\rho(t), \omega(t)) \in [0, 1] \times \mathbb{S}^2,$$

$$\int_0^{t_{\mathrm{f}}}
ho(t) dt o \mathsf{min}$$

$$\int_0^{t_f} \rho(t) dt \to \min \implies m(t_f) \to \max.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline	Definitions and notations	Necessary conditions	Sufficient Conditions	Applications 00000000
Test su	fficient conditions b	ackward		

Why to test sufficient conditions backward for fuel-optimal problem?

For fuel-optimal problem, m is a state instead of a constant parameter.

 $\begin{array}{rcl} \rho \text{ is a piece-wise constant} \implies & \frac{d}{dt}\frac{\partial m}{\partial \rho_0}(\cdot,\bar{\rho}_0)\equiv 0 \text{ on } (t_i,t_{i+1}).\\ m(0) \text{ is fixed} \implies & \frac{\partial m}{\partial \rho_0}(0,\bar{\rho}_0)=0. \end{array}$

It is concluded that det $\left[\frac{\partial x}{\partial p_0}(t, \bar{p}_0)\right] = 0$ on $[0, t_1]$.

Outline	Definitions and notations	Necessary conditions	Sufficient Conditions	Applic
			000000000000000000000000000000000000000	

Parameterized family of extremals

Define the Lagrangian submanifold

$$\mathscr{L}_f := \{ (x, p) \in T^* \mathscr{X} \mid x \in \mathscr{M}_f, \ p \perp T_x \mathscr{M}_f \}.$$

Locally, there exists a diffeomorphism $F : \mathscr{L}_f \to (\mathbb{R}^n)^*$ such that for every $(x, p) \in \mathscr{L}_f$ there exists one and only one $q \in (\mathbb{R}^n)^*$ with F(x, p) = q.

Parameterized family of extremals

Let $\bar{q} := F^{-1}(\bar{x}(t_f), \bar{p}(t_f))$. Given the reference extremal $(\bar{x}(\cdot), \bar{p}(\cdot)) = e^{(t-t_f)\tilde{H}}(F^{-1}(\bar{q}))$ on $[0, t_f]$, let $\mathcal{Q} \subset \mathcal{L}_f$ be a sufficiently small open neighborhood of \bar{q} , we say the subset

$$\mathscr{F}_q = \{(x(t), p(t)) \in T^*\mathscr{X} \mid (x(t), p(t)) = e^{(t-t_f)\vec{H}}(F^{-1}(q)), \ t \in [0, t_f], \ q \in F(\mathscr{Q})\},$$

a *q*-parameterized family of extremals around the reference one.

・ 同 ト ・ ヨ ト ・ ヨ

Outline	Definitions and notations	Necessary conditions	Sufficient Conditions	Applications

Sufficient conditions for fuel-optimal problem

Let
$$(x(t,q),p(t,q)) := e^{(t-t_f)\vec{H}}(F^{-1}(q))$$
 and $\delta_q(t) = \det \left[\frac{\partial x}{\partial q}(t,\bar{q})\right]$.

No-fold condition on smooth bang arcs

 $\delta_q(\cdot) \neq 0$ on (t_i, t_{i+1}) .

No-fold condition at switching times

 $\delta_q(t_i-)\delta_q(t_i+)>0.$

The third condition

$$\zeta^{T}\Big\{\frac{\partial\rho}{\partial q}(0,\bar{q})\left[\frac{\partial x}{\partial q}(0,\bar{q})\right]^{-1}-\nu_{i}d^{2}\phi_{i}(\bar{x}(0))\Big\}\zeta{<}0\text{ for every }\zeta\in\mathcal{T}_{\bar{x}(0)}\mathscr{M}_{i}.$$

- 4 同 6 4 日 6 4 日 6

3

Outline	Definitions and notations	Necessary conditions	Sufficient Conditions	Applications

Numerical Applications

Outline	Definitions and notations	Necessary conditions

Sufficient Conditions

Conjugate point test: CRTBP (mass constant model with variable target)

Zheng Chen¹ L¹-Optimality Conditions

Zheng Chen¹

L¹-Optimality Conditions

Focal point test: case A (mass varying model with fixed initial point)

Applications

Outline	Definitions and notations	Necessary conditions	Sufficient Conditions	Applications
				00000000

Focal point test: case B (mass varying model with variable initial point)

-a non-optimal example

Boundary conditions

Initial point varies on a circular orbit of the Earth, while the final point is fixed on a Halo orbit with final mass free.

$\mu :=$	0.01215
$\tau_{\rm max} :=$	1.0 N
$m_0:=$	300 kg
$I_{sp} :=$	2000 s
$g_0 :=$	9.81 m/s ²
$\beta :=$	$1/(I_{sp}g_0)>0$

Zheng Chen¹

L¹-Optimality Conditions

Focal point test: case B (mass varying model with variable initial point)

-----a non-optimal example

Outline	Definitions and notations	Necessary conditions	Sufficient Conditions	Applications
				00000000

Focal point test: case C (the same boundary conditions as case B)

Zheng Chen¹

Λ

4 L¹-Optimality Conditions 8

Time (day)

10

12

2

Outline	Definitions and notations	Necessary conditions	Sufficient Conditions	Applications
Focal p	oint test: case C (t	he same boundary	/ conditions as ca	se B)

Zheng Chen¹ L¹-Optimality Conditions

Outline	Definitions and notations	Necessary conditions	Sufficient Conditions	Applications

Thank you for your attention!

Email: zheng.chen@math.u-psud.fr