UNBALANCED OPTIMAL TRANSPORT

Lénaïc Chizat joint work with F-X. Vialard, G. Peyré & B. Schmitzer

> Doctorant en 2ème année au CEREMADE Université Paris Dauphine

> > SMAI-MODE 2016

Given

- $(\mu,
 u)$ two probability measures on a space Ω
- a cost function $c: \Omega^2 \to \mathbb{R}$

compute

$$C(\mu,\nu) \stackrel{\text{def. inf}}{=} \inf_{\boldsymbol{\gamma} \in \mathcal{P}(\Omega^2)} \left\{ \int_{\Omega^2} c(x,y) \mathrm{d}\boldsymbol{\gamma}(x,y) : (\operatorname{proj}_x)_{\#} \boldsymbol{\gamma} = \mu, (\operatorname{proj}_y)_{\#} \boldsymbol{\gamma} = \nu \right\}$$

Given

- $(\mu,
 u)$ two probability measures on a space Ω
- a cost function $c: \Omega^2 \to \mathbb{R}$

compute

$$C(\mu,\nu) \stackrel{\text{def.}}{=} \inf_{\substack{\boldsymbol{\gamma} \in \mathcal{P}(\Omega^2) \\ \boldsymbol{\gamma} \in \mathcal{P}(\Omega^2)}} \left\{ \underbrace{\int_{\Omega^2} c(x,y) \mathrm{d}\boldsymbol{\gamma}(x,y)}_{\mathbb{E}_{\boldsymbol{\gamma}}(c)} : \underbrace{(\operatorname{proj}_x)_{\#}\boldsymbol{\gamma} = \mu, (\operatorname{proj}_y)_{\#}\boldsymbol{\gamma} = \nu}_{\text{Coupling constraint}} \right\}$$

Given

- $(\mu,
 u)$ two probability measures on a space Ω
- a cost function $c: \Omega^2 \to \mathbb{R}$

compute

$$C(\mu,\nu) \stackrel{\text{def. inf}}{=} \inf_{\gamma \in \mathcal{P}(\Omega^2)} \left\{ \int_{\Omega^2} c(x,y) d\gamma(x,y) : (\operatorname{proj}_x)_{\#} \gamma = \mu, (\operatorname{proj}_y)_{\#} \gamma = \nu \right\}$$

Figure: Independant coupling (here $\Omega = [0, 1]$)

Given

- $(\mu,
 u)$ two probability measures on a space Ω
- a cost function $c: \Omega^2 \to \mathbb{R}$

compute

$$C(\mu,\nu) \stackrel{\text{def. inf}}{=} \inf_{\gamma \in \mathcal{P}(\Omega^2)} \left\{ \int_{\Omega^2} c(x,y) \mathrm{d}\gamma(x,y) : (\operatorname{proj}_x)_{\#} \gamma = \mu, (\operatorname{proj}_y)_{\#} \gamma = \nu \right\}$$

Figure: Independant coupling (here $\Omega = [0, 1]$)

Given

- $(\mu,
 u)$ two probability measures on a space Ω
- a cost function $c: \Omega^2 \to \mathbb{R}$

compute

$$C(\mu,\nu) \stackrel{\text{def.}}{=} \inf_{\boldsymbol{\gamma} \in \mathcal{P}(\Omega^2)} \left\{ \int_{\Omega^2} c(x,y) \mathrm{d}\boldsymbol{\gamma}(x,y) : (\operatorname{proj}_x)_{\#} \boldsymbol{\gamma} = \mu, (\operatorname{proj}_y)_{\#} \boldsymbol{\gamma} = \nu \right\}$$

Interest

- Optimal transport plan γ_{opt}
- Optimal cost $C(\mu, \nu)$

Static

Dynamic

Examples & Numerics

Conclusion

Example of application (1)

 $(g_{ij})_{ij} \in (\mathbb{R}^3)^{N_x imes N_y}$

 $(f_{ij})_{ij} \in (\mathbb{R}^3)^{N_x \times N_y}$

Figure: Optimal transport for color transfer

Static

Dynamic

Examples & Numerics

Conclusion

Example of application (1)

$$(g_{ij})_{ij} \in (\mathbb{R}^3)^{N_x imes N_y}$$

 $(f_{ij})_{ij} \in (\mathbb{R}^3)^{N_x \times N_y}$

Figure: Optimal transport for color transfer

 \Rightarrow Conservation of mass is not natural

Static

Dynamic

Examples & Numerics

Conclusion

Example of application (1)

$$(g_{ij})_{ij} \in (\mathbb{R}^3)^{N_x imes N_y}$$

 $(f_{ij})_{ij} \in (\mathbb{R}^3)^{N_x \times N_y}$

Figure: Optimal transport for color transfer

 \Rightarrow Conservation of mass is not natural

Figure: Machine learning: data described by empirical measures or histograms (text, image)

Figure: Machine learning: data described by empirical measures or histograms (text, image)

 \Rightarrow Conservation of mass sometimes undesirable...

Figure: Machine learning: data described by empirical measures or histograms (text, image)

 \Rightarrow Conservation of mass sometimes undesirable...

Also: gradient flows, shape matching, economics...

Beyond probability measures

Specific models:

Static [Hanin, 1992], [Benamou, 2003] Dynamic [Piccoli and Rossi, 2013], [Mass et al., 2015], [Lombardi and Maitre, 2013]

Beyond probability measures

Specific models:

Static [Hanin, 1992], [Benamou, 2003] Dynamic [Piccoli and Rossi, 2013], [Mass et al., 2015], [Lombardi and Maitre, 2013]

General framework:

- Static formulation
- Dynamic formulation
- Efficient algorithms

Beyond probability measures

Specific models:

Static [Hanin, 1992], [Benamou, 2003] Dynamic [Piccoli and Rossi, 2013], [Mass et al., 2015], [Lombardi and Maitre, 2013]

General framework:

- Static formulation
- Dynamic formulation
- Efficient algorithms

Setting : Ω convex compact in \mathbb{R}^n .

Static Formulation

Dynamic Formulation

Examples & Numerics

Static Formulation

Dynamic Formulation

Examples & Numerics

minimize
$$\int_{\Omega^2} c(x, y) d\gamma(x, y)$$

subject to $(\text{proj}_x)_{\#} \gamma = \mu$
 $(\text{proj}_y)_{\#} \gamma = \nu$

$$\begin{array}{ll} \text{minimize } \int_{\Omega^2} c(x,y) m(x,y) \mathrm{d}\lambda_{ref} & (\gamma = m\lambda_{ref}) \\ \text{subject to } (\mathrm{proj}_x)_{\#} m = \mu & (\text{abuse of notation}) \\ (\mathrm{proj}_y)_{\#} m = \nu & \end{array}$$

$$\begin{array}{ll} \text{minimize } \int_{\Omega^2} c(x,y) m(x,y) \mathrm{d}\lambda_{ref} & (\gamma = m\lambda_{ref}) \\ \text{subject to } (\mathrm{proj}_x)_{\#} m = \mu & (\text{abuse of notation}) \\ (\mathrm{proj}_y)_{\#} m = \nu & \end{array}$$

minimize
$$\int_{\Omega^2} c(m(x, y), x, y) d\lambda_{ref}$$

subject to $(\text{proj}_x)_{\#} m = \mu$
 $(\text{proj}_y)_{\#} m = \nu$

Static formulation of Unbalanced OT

$$\begin{split} C(\rho_0,\rho_1) \stackrel{\text{def.}}{=} \text{minimize} & \int_{\Omega^2} c\big((x,m_\mu(x,y)),(y,m_\nu(x,y))\big) \mathrm{d}\lambda_{\text{ref}} \\ \text{subject to } (\text{proj}_x)_\# m_\mu &= \mu \\ (\text{proj}_y)_\# m_\nu &= \nu \end{split}$$

Static

Dynamic

Examples & Numerics

Conclusion

Properties

Theorem (Standard OT) If $c^{1/p}$ is a metric on Ω then $C^{1/p}$ is a metric on $\mathcal{P}(\Omega)$.

Static

Dynamic

Examples & Numerics

Conclusion

Properties

Theorem (Standard OT) If $c^{1/p}$ is a metric on Ω then $C^{1/p}$ is a metric on $\mathcal{P}(\Omega)$.

 $\mathsf{Cone}(\Omega) := (\Omega \times \mathbb{R}_+)/(\Omega \times \{0\})$

Static

Dynamic

Examples & Numerics

Conclusion

Properties

Theorem (Standard OT) If $c^{1/p}$ is a metric on Ω then $C^{1/p}$ is a metric on $\mathcal{P}(\Omega)$.

Cone(Ω) := ($\Omega \times \mathbb{R}_+$)/($\Omega \times \{0\}$) Theorem (Unbalanced OT) If $c^{1/p}$ is a metric on Cone(Ω) then $C^{1/p}$ is a metric on $\mathcal{M}_+(\Omega)$.

Static

Dynamic

Examples & Numerics

Conclusion

Properties

Also: Duality, weak* continuity...

Theorem (Standard OT) If $c^{1/p}$ is a metric on Ω then $C^{1/p}$ is a metric on $\mathcal{P}(\Omega)$.

Cone(Ω) := ($\Omega \times \mathbb{R}_+$)/($\Omega \times \{0\}$) Theorem (Unbalanced OT) If $c^{1/p}$ is a metric on Cone(Ω) then $C^{1/p}$ is a metric on $\mathcal{M}_+(\Omega)$. Introduction Static Dynamic Examples & Numerics Conclusion
Outline

Static Formulation

Dynamic Formulation

Examples & Numerics

Static

Dynamic

Examples & Numerics

Conclusion

A dynamic approach: standard OT

Static

Dynamic

Examples & Numerics

Conclusion

A dynamic approach: standard OT

Change of variables: $\omega = \rho v$ Infinitesimal cost : $f(x, \rho, \omega)$

Static

Dynamic

Examples & Numerics

Conclusion

A dynamic approach: standard OT

Change of variables: $\omega = \rho v$ Infinitesimal cost : $f(x, \rho, \omega)$

• homogeneous in (ρ, ω) ;

Static

Dynamic

Examples & Numerics

Conclusion

A dynamic approach: standard OT

Change of variables: $\omega = \rho v$ Infinitesimal cost : $f(x, \rho, \omega)$

- homogeneous in (ρ, ω) ;
- subadditive in (ρ, ω) ;

Static

Dynamic

Examples & Numerics

Conclusion

A dynamic approach: standard OT

Change of variables: $\omega = \rho v$ Infinitesimal cost : $f(x, \rho, \omega)$

- homogeneous in (ρ, ω) ;
- subadditive in (ρ, ω) ;

Standard dynamic formulation

$$\begin{array}{ll} \text{minimize} & \int_0^1 \int_\Omega f(x, \rho_t(x), \omega_t(x)) \mathrm{d}x \mathrm{d}t \\ \text{subject to} & \partial_t \rho + \nabla \cdot \omega = 0 \\ & (\text{proj}_{t=0})_{\#} \rho = \mu \quad , \quad (\text{proj}_{t=1})_{\#} \rho = \nu \, . \end{array}$$

Static

Dynamic

Examples & Numerics

Conclusion

A dynamic approach : unbalanced OT

Static

Dynamic

Examples & Numerics

Conclusion

A dynamic approach : unbalanced OT

Variables: $\omega = \rho v$, $\zeta = \rho \alpha$ Infinitesimal cost : $f(x, \rho, \omega, \zeta)$

Static

Dynamic

Examples & Numerics

Conclusion

A dynamic approach : unbalanced OT

Variables: $\omega = \rho v$, $\zeta = \rho \alpha$ Infinitesimal cost : $f(x, \rho, \omega, \zeta)$

• homogeneous in (ρ, ω, ζ)

Static

Dynamic

Examples & Numerics

Conclusion

A dynamic approach : unbalanced OT

Variables: $\omega = \rho v$, $\zeta = \rho \alpha$ Infinitesimal cost : $f(x, \rho, \omega, \zeta)$

- homogeneous in (ρ, ω, ζ)
- subadditive in (ρ, ω, ζ)

Static

Dynamic

Examples & Numerics

Conclusion

A dynamic approach : unbalanced OT

Variables: $\omega = \rho v$, $\zeta = \rho \alpha$ Infinitesimal cost : $f(x, \rho, \omega, \zeta)$

- homogeneous in (ρ, ω, ζ)
- subadditive in (ρ, ω, ζ)

Unbalanced dynamic formulation

$$D(\rho_0, \rho_1) \stackrel{\text{def.}}{=} \text{minimize} \quad \int_0^1 \int_\Omega f(x, \rho_t(x), \omega_t(x), \zeta_t(x)) dx dt$$

subject to $\partial_t \rho + \nabla \cdot \omega = \zeta$ (weakly)
 $(\text{proj}_{t=0})_{\#} \rho = \mu$, $(\text{proj}_{t=1})_{\#} \rho = \nu$.

Dynamic to Static : "Benamou-Brenier" formula

Costs between points in $Cone(\Omega)$ induced by f:

Dirac-based cost c_d : $D(m_0\delta_{x_0}, m_1\delta_{x_1})$

Path-based cost c_p : infimum of the dynamic functional restricted to smooth, stable Dirac trajectories $m(t)\delta_{x(t)}$.

Dynamic to Static : "Benamou-Brenier" formula Costs between points in Cone(Ω) induced by f: Dirac-based cost c_d : $D(m_0\delta_{x_0}, m_1\delta_{x_1})$

Path-based cost c_p : infimum of the dynamic functional restricted to smooth, stable Dirac trajectories $m(t)\delta_{x(t)}$.

Theorem (C. et al., 2015)

Let c be a cost function satisfying $c_d \leq c \leq c_p$. If the associated $C : \mathcal{M}_+(\Omega)^2 \to \mathbb{R}_+$ is weakly* continuous, then C = D.

Dynamic to Static : "Benamou-Brenier" formula Costs between points in Cone(Ω) induced by f: Dirac-based cost c_d : $D(m_0\delta_{x_0}, m_1\delta_{x_1})$ Path-based cost c_p : infimum of the dynamic functional restricted

to smooth, stable Dirac trajectories $m(t)\delta_{x(t)}$.

Theorem (C. et al., 2015)

Let c be a cost function satisfying $c_d \leq c \leq c_p$. If the associated $C : \mathcal{M}_+(\Omega)^2 \to \mathbb{R}_+$ is weakly* continuous, then C = D.

Example

A good candidate is the convex regularization of c_p :

$$\inf_{\substack{m_0^a + m_0^b = m_0 \\ m_1^a + m_1^b = m_1}} c_p((x_0, m_0^a), (x_1, m_1^a)) + c_p((x_0, m_0^b), (x_1, m_1^b))$$

Introduction	Static	Dynamic	Examples & Numerics	Conclusion
		Outline		

Static Formulation

Dynamic Formulation

Examples & Numerics

Static

Dynamic

Examples & Numerics

Conclusion

Partial OT / Wasserstein-TV

[Piccoli and Rossi, 2013], [C. et al, 2015b]

Static

Dynamic

Examples & Numerics

Conclusion

Partial OT / Wasserstein-TV

[Piccoli and Rossi, 2013] , [C. et al, 2015b]

• "Lagrangian" formulation of partial OT : $m \leftrightarrow \delta$;

Static

Dynamic

Examples & Numerics

Conclusion

Partial OT / Wasserstein-TV

[Piccoli and Rossi, 2013] , [C. et al, 2015b]

- "Lagrangian" formulation of partial OT : $m \leftrightarrow \delta$;
- $C^{1/p}$ defines a metric on $\mathcal{M}_+(\Omega)$;

Static

Dynamic

Examples & Numerics

Conclusion

Partial OT / Wasserstein-TV

[Piccoli and Rossi, 2013] , [C. et al, 2015b]

- "Lagrangian" formulation of partial OT : $m \leftrightarrow \delta$;
- C^{1/p} defines a metric on M₊(Ω);
- *p* = 1 gives the so-called *bounded Lipschitz* metric.

[Liero et al. 2015, Kondratyev et al. 2015, C. et al, 2015a,b]

[Liero et al. 2015, Kondratyev et al. 2015, C. et al, 2015a,b]

WF defines a Riemannian-like metric on M₊(Ω);

[Liero et al. 2015, Kondratyev et al. 2015, C. et al, 2015a,b]

- WF defines a Riemannian-like metric on M₊(Ω);
- static cost in 1D : $c((x, m_x), (y, m_y)) = |\sqrt{m_x}e^{ix} \sqrt{m_y}e^{iy}|^2$;

[Liero et al. 2015, Kondratyev et al. 2015, C. et al, 2015a,b]

- WF defines a Riemannian-like metric on M₊(Ω);
- static cost in 1D : $c((x, m_x), (y, m_y)) = |\sqrt{m_x}e^{ix} \sqrt{m_y}e^{iy}|^2$;
- alternative formulation :

$$\inf_{\gamma} \int_{\Omega^2} \tilde{c}(x, y) \mathrm{d}\gamma(x, y) + \underbrace{\mathcal{K}L((\mathrm{proj}_x)_{\#}\gamma|\mu) + \mathcal{K}L((\mathrm{proj}_y)_{\#}\gamma|\nu)}_{\mathcal{K}L((\mathrm{proj}_y)_{\#}\gamma|\nu)}$$

Static

Dynamic

Examples & Numerics

Conclusion

Numerics: dynamic

Proximal splitting algorithms on the dynamic formulation : https://github.com/lchizat/optimal-transport

Figure: FR Figure: W_2 Figure: $W_2 - TV$ Figure: $W_2 - FR$

Dynamic

Examples & Numerics

Conclusion

Numerics: dynamic

Proximal splitting algorithms on the dynamic formulation

Figure: Geodesics between ρ_0 and ρ_1 for (1st row) Fisher-Rao (2nd row) W_2 (3rd row) partial OT (4th row) WF.

Static

Dynamic

Examples & Numerics

Conclusion

Numerics: dynamic

Proximal splitting algorithms on the dynamic formulation

Figure: Geodesics between ρ_0 and ρ_1 for (1st row) Fisher-Rao (2nd row) W_2 (3rd row) partial OT (4th row) WF.

Static

Dynamic

Examples & Numerics

Conclusion

Numerics: dynamic

Proximal splitting algorithms on the dynamic formulation

Figure: Geodesics between ρ_0 and ρ_1 for (1st row) Fisher-Rao (2nd row) W_2 (3rd row) partial OT (4th row) WF.

Static

Dynamic

Examples & Numerics

Conclusion

Numerics: dynamic

Proximal splitting algorithms on the dynamic formulation

Figure: Geodesics between ρ_0 and ρ_1 for (1st row) Fisher-Rao (2nd row) W_2 (3rd row) partial OT (4th row) WF.

Dynamic

Examples & Numerics

Conclusion

Numerics: dynamic

Proximal splitting algorithms on the dynamic formulation

Figure: Geodesics between ρ_0 and ρ_1 for (1st row) Fisher-Rao (2nd row) W_2 (3rd row) partial OT (4th row) WF.

Examples & Numerics

Conclusion

Numerics: static

Entropy regularization on the static formulation : fast Sinkhorn-like algorithm

Figure: (top) 4 probability measures on $\Omega = [0, 1]$ with two bumps each

Examples & Numerics

Conclusion

Numerics: static

Entropy regularization on the static formulation : fast Sinkhorn-like algorithm

Figure: (top) 4 probability measures on $\Omega = [0, 1]$ with two bumps each (middle) W_2 barycenter

Examples & Numerics

Conclusion

Numerics: static

Entropy regularization on the static formulation : fast Sinkhorn-like algorithm

Figure: (top) 4 probability measures on $\Omega = [0, 1]$ with two bumps each (middle) W_2 barycenter (bottom) WF barycenter.

Introduction Static Dynamic Examples & Numerics Conclusion

Take home messages Unbalanced optimal transport :

Take home messages

Unbalanced optimal transport :

• stabilizes solutions and is natural in many applications ;

Take home messages

Unbalanced optimal transport :

- stabilizes solutions and is natural in many applications ;
- admits dynamic, static and dual formulations ;

Take home messages

Unbalanced optimal transport :

- stabilizes solutions and is natural in many applications ;
- admits dynamic, static and dual formulations ;
- can be solved by **fast algorithms** adapted from standard OT.

Static

Dynamic

Conclusion

For Further Reading I

Chizat, L., Peyré, G., Schmitzer, B., and Vialard, F.-X. (2015a).

Unbalanced optimal transport: geometry and Kantorovich formulation.

Chizat, L., Peyré, G., Schmitzer, B., and Vialard, F.-X. (2015b).

An interpolating distance between optimal transport and Fisher-Rao.

- L
 - Liero, M., Mielke, A., and Savaré, G. (2015).

Optimal Entropy-Transport problems and a new Hellinger-Kantorovich distance between positive measures.