Introduction	Problem formulation	Batch case	Online case	Applications	Conclusion
SMAI MODE 2016					1/33

A STOCHASTIC MAJORIZE-MINIMIZE SUBSPACE ALGORITHM WITH APPLICATION TO FILTER IDENTIFICATION PROBLEMS

Émilie Chouzenoux and Jean-Christophe Pesquet

Laboratoire d'Informatique Gaspard Monge - CNRS Univ. Paris-Est Marne-la-Vallée, France

25 March 16

Introduction	Problem formulation	Batch case	Online case	Applications	Conclusion
●00	00000	00000	000000000	00000000	00
SMAI MODE 2016					2/33

Introduction

 $(\mathbf{X}_n)_{n \ge 1}$ random matrices in $\mathbb{R}^{N \times Q}$, $(\mathbf{y}_n)_{n \ge 1}$ random vectors in \mathbb{R}^Q with

$$egin{aligned} (orall n \in \mathbb{N}^*) & \mathsf{E}(\|\mathbf{y}_n\|^2) = arrho \ \mathsf{E}(\mathbf{X}_n \mathbf{y}_n) = m{r} \ \mathsf{E}(\mathbf{X}_n \mathbf{X}_n^{ op}) = m{R}, \end{aligned}$$

and $\Psi \colon \mathbb{R}^N \to \mathbb{R}$ regularization function.

Introduction	Problem formulation	Batch case	Online case	Applications	Conclusion
000	00000	00000	00000000	0000000	00
SMAI MODE 2016					3/33

Introduction

NUMEROUS EXAMPLES:

- supervised classification
- inverse problems
- system identification, channel equalization
- linear prediction/interpolation
- echo cancellation, interference removal

► ..

How to solve the problem efficiently when the second-order statistics of $(\mathbf{X}_n, \mathbf{y}_n)_{n \ge 1}$ are estimated online, in an adaptive manner ?

Introduction	Problem formulation	Batch case	Online case	Applications	Conclusion
000	00000	00000	00000000	0000000	00
SMAI MODE 2016					3/33

Introduction

NUMEROUS EXAMPLES:

- supervised classification
- inverse problems
- system identification, channel equalization
- linear prediction/interpolation
- echo cancellation, interference removal

► ..

How to solve the problem efficiently when the second-order statistics of $(\mathbf{X}_n, \mathbf{y}_n)_{n \ge 1}$ are estimated online, in an adaptive manner ? \Rightarrow Majorize-Minimize approach.

Introduction ○○●	Problem formulation	Batch case	Online case	Applications	Conclusion
SMAI MODE 2016					4/33

Outline

- * **PROBLEM FORMULATION**
 - Stochastic approximation of the criterion
 - Form of the regularization function
- * BATCH MAJORIZE-MINIMIZE SUBSPACE ALGORITHM
 - Quadratic tangent majorant
 - Subspace acceleration strategy
 - Convergence results
- * STOCHASTIC MAJORIZE-MINIMIZE SUBSPACE ALGORITHM
 - Proposed algorithm
 - Complexity study
 - Convergence results
- * APPLICATIONS TO FILTER IDENTIFICATIONS
 - Online estimation of 2D blur
 - Sparse adaptive filtering

Introduction	Problem formulation	Batch case	Online case	Applications	Conclusion
000	●0000	00000	00000000	00000000	00
SMAI MODE 2016					5/33

Problem formulation

000 C	00000	000000000	00000000	Conclusion 00
SMAI MODE 2016				6/33

Form of the objective function

Estimate of the objective function at iteration $n \in \mathbb{N}^*$:

$$\begin{aligned} (\forall \boldsymbol{h} \in \mathbb{R}^N) \quad \mathbf{F}_{\boldsymbol{n}}(\boldsymbol{h}) &= \frac{1}{2n} \sum_{k=1}^n \|\mathbf{y}_k - \mathbf{X}_k^\top \boldsymbol{h}\|^2 + \Psi(\boldsymbol{h}) \\ &= \frac{1}{2} \rho_{\boldsymbol{n}} - \mathbf{r}_{\boldsymbol{n}}^\top \boldsymbol{h} + \frac{1}{2} \boldsymbol{h}^\top \mathbf{R}_{\boldsymbol{n}} \boldsymbol{h} + \Psi(\boldsymbol{h}) \end{aligned}$$

* Batch case:

$$\rho_n \equiv \varrho, \mathbf{r}_n \equiv r \text{ and } \mathbf{R}_n \equiv R.$$

* Online case:

$$\boldsymbol{\rho}_n = \frac{1}{n} \sum_{k=1}^n \|\mathbf{y}_k\|^2, \mathbf{r}_n = \frac{1}{n} \sum_{k=1}^n \mathbf{X}_k \mathbf{y}_k, \mathbf{R}_n = \frac{1}{n} \sum_{k=1}^n \mathbf{X}_k \mathbf{X}_k^\top.$$

Introduction	Problem formulation	Batch case	Online case	Applications	Conclusion 00
SMAI MODE 2016					7/33

Form of the regularization function

$$(\forall m{h} \in \mathbb{R}^N) \quad \Psi(m{h}) = \underbrace{rac{1}{2} m{h}^\top m{V}_0 m{h} - m{v}_0^\top m{h}}_{ ext{elastic net penalization}} + \sum_{s=1}^S \psi_s(\|m{V}_s m{h} - m{v}_s\|)$$

where $v_0 \in \mathbb{R}^N$, $V_0 \in \mathbb{R}^{N \times N}$ symmetric positive semi-definite, for every $s \in \{1, \ldots, S\}$, $v_s \in \mathbb{R}^{P_s}$, $V_s \in \mathbb{R}^{P_s \times N}$, $\psi_s : \mathbb{R} \to \mathbb{R}$ \sim ability to take into account linear operators.

Introduction	Problem formulation	Batch case	Online case	Applications	Conclusion
SMAI MODE 2016					7/33

Form of the regularization function

$$(\forall \boldsymbol{h} \in \mathbb{R}^N) \quad \Psi(\boldsymbol{h}) = \underbrace{\frac{1}{2} \boldsymbol{h}^\top \boldsymbol{V}_0 \boldsymbol{h} - \boldsymbol{v}_0^\top \boldsymbol{h}}_{\text{elastic net penalization}} + \sum_{s=1}^S \psi_s(\|\boldsymbol{V}_s \boldsymbol{h} - \boldsymbol{v}_s\|)$$

where $\boldsymbol{v}_0 \in \mathbb{R}^N$, $\boldsymbol{V}_0 \in \mathbb{R}^{N \times N}$ symmetric positive semi-definite, for every $s \in \{1, \dots, S\}$, $\boldsymbol{v}_s \in \mathbb{R}^{P_s}$, $\boldsymbol{V}_s \in \mathbb{R}^{P_s \times N}$, $\psi_s \colon \mathbb{R} \to \mathbb{R}$

→ ability to take into account linear operators.

Assumptions on $(\psi_s)_{1 \leq s \leq S}$:

(i) For every $s \in \{1, \ldots, S\}$, ψ_s is an even lower-bounded function, which is continuously differentiable, and $\lim_{t \to 0} \dot{\psi}_s(t)/t \in \mathbb{R}$,

where $\dot{\psi}_s$ denotes the derivative of ψ_s . (ii) For every $s \in \{1, \ldots, S\}$, $\psi_s(\sqrt{.})$ is concave on $[0, +\infty[$. (iii) There exists $\overline{\nu} \in [0, +\infty[$ such that $(\forall s \in \{1, \ldots, S\}) \ (\forall t \in [0, +\infty[) \ 0 \leq \nu_s(t) \leq \overline{\nu}$, where $\nu_s(t) = \dot{\psi}_s(t)/t$.

Introduction	Problem formulation	Batch case	Online case	Applications	Conclusion
SMAI MODE 2016	00000		000000000		8/33

Examples of functions $(\psi_s)_{1\leqslant s\leqslant S}$

	$\lambda_s^{-1}\psi_s(t)$	Туре	Name
	$ t - \delta_s \log(t /\delta_s + 1)$	$\ell_2 - \ell_1$	
nvex	$egin{cases} t^2 & ext{if} \ t < \delta_s \ 2\delta_s t - \delta_s^2 & ext{otherwise} \end{cases}$	$\ell_2 - \ell_1$	Huber
ŭ	$\log(\cosh(t))$	$\ell_2 - \ell_1$	Green
	$(1+t^2/\delta_s^2)^{\kappa_s/2}-1$	$\ell_2 - \ell_{\kappa_s}$	
	$1 - \exp(-t^2/(2\delta_s^2))$	$\ell_2 - \ell_0$	Welsch
	$t^2/(2\delta_s^2 + t^2)$	$\ell_2 - \ell_0$	Geman
X			-McClure
nconv	$\begin{cases} 1 - (1 - t^2/(6\delta_s^2))^3 & \text{if } t \leqslant \sqrt{6}\delta_s \\ 1 & \text{otherwise} \end{cases}$	$\ell_2 - \ell_0$	Tukey biweight
Ň	$\tanh(t^2/(2\delta_s^2))$	$\ell_2 - \ell_0$	Hyberbolic tangent
	$\log(1+t^2/\delta_s^2)$	$\ell_2 - \log$	Cauchy
	$1 - \exp(1 - (1 + t^2/(2\delta_s^2))^{\kappa_s/2})$	$\ell_2 - \ell_{\kappa_s} - \ell_0$	Chouzenoux
	$(\lambda_s, \delta_s) \in]0, +\infty[^2, \kappa]$	$a_s \in [1, 2]$	

Introduction	Problem formulation 0000●	Batch case	Online case	Applications	Conclusion
SMAI MODE 2016					9/33

Examples of functions $(\psi_s)_{1 \leqslant s \leqslant S}$

 $\psi_s(t) = (1 + \frac{t^2}{\delta^2})^{1/2} - 1, \, \psi_s(t) = \log\left(1 + \frac{t^2}{\delta^2}\right), \, \psi_s(t) = 1 - \exp(-\frac{t^2}{2\delta^2}).$

Introduction	Problem formulation	Batch case	Online case	Applications	Conclusion
000	00000	●0000	000000000	00000000	00
SMAI MODE 2016					10/33

Batch majorize-minimize subspace algorithm

Introduction	Problem formulation	Batch case o●ooo	Online case	Applications	Conclusion
SMAI MODE 2016					11/33

Majorize-Minimize principle

1. Find a tractable surrogate for $F \rightsquigarrow$ Majorization step \rightsquigarrow Quadratic tangent majorant

$$(\forall \boldsymbol{h} \in \mathbb{R}^N) \quad \Theta(\boldsymbol{h}, \boldsymbol{h}_n) = F(\boldsymbol{h}_n) + \nabla F(\boldsymbol{h}_n)^\top (\boldsymbol{h} - \boldsymbol{h}_n) \\ + \frac{1}{2} (\boldsymbol{h} - \boldsymbol{h}_n)^\top \boldsymbol{A}(\boldsymbol{h}_n) (\boldsymbol{h} - \boldsymbol{h}_n),$$

where

$$\begin{aligned} \boldsymbol{A}(\boldsymbol{h}) &= \boldsymbol{R} + \boldsymbol{V}_0 + \boldsymbol{V}^\top \operatorname{Diag} \left(\boldsymbol{b}(\boldsymbol{h}) \right) \boldsymbol{V} \in \mathbb{R}^{N \times N} \\ \boldsymbol{V} &= [\boldsymbol{V}_1^\top \dots \boldsymbol{V}_S^\top]^\top \in \mathbb{R}^{P \times N}, \quad P = P_1 + \dots + P_S \\ \text{and } \boldsymbol{b}(\boldsymbol{h}) &= \left(b_i(\boldsymbol{h}) \right)_{1 \leqslant i \leqslant P} \in \mathbb{R}^P \text{ is such that} \\ (\forall s \in \{1, \dots, S\}) (\forall p \in \{1, \dots, P_s\}) \\ b_{P_1 + \dots + P_{s-1} + p}(\boldsymbol{h}) &= \nu_s(\|\boldsymbol{V}_s \boldsymbol{h} - \boldsymbol{v}_s\|). \end{aligned}$$

Introduction	Problem formulation	Batch case ○●○○○	Online case	Applications	Conclusion
SMAI MODE 2016					11/33

Majorize-Minimize principle

1. Find a tractable surrogate for $F \rightsquigarrow$ Majorization step

Introduction	Problem formulation	Batch case ○○●○○	Online case	Applications	Conclusion
SMAI MODE 2016					12/33

Subspace acceleration

2. Minimize in a subspace \rightsquigarrow Minimization step

$$(\forall n \in \mathbb{N}^*)$$
 $\boldsymbol{h}_{n+1} \in \operatorname{Argmin}_{\boldsymbol{h} \in \operatorname{span} \boldsymbol{D}_n} \Theta(\boldsymbol{h}, \boldsymbol{h}_n),$

with $D_n \in \mathbb{R}^{N \times M_n}$.

• $rank(D_n) = N \Rightarrow$ half-quadratic algorithm

• M_n small \Rightarrow low-complexity per iteration.

Typical choice:

$$\boldsymbol{D}_n = \begin{cases} [-\nabla F(\boldsymbol{h}_n), \boldsymbol{h}_n, \boldsymbol{h}_n - \boldsymbol{h}_{n-1}] & \text{if } n > 1\\ [-\nabla F(\boldsymbol{h}_1), \boldsymbol{h}_1] & \text{if } n = 1 \end{cases}$$

→ **3MG** algorithm

(similar ideas in TWIST, FISTA, NLCG, L-BFGS, ...)

Introduction	Problem formulation	Batch case 000●0	Online case	Applications	Conclusion 00
SMAI MODE 2016					13/33

Batch MM subspace algorithm

Initialize $D_0, u_0, h_1 = D_0 u_0$ $D_0^R = RD_0, D_0^{V_0} = V_0D_0, D_0^V = VD_0$ For n = 1, 2, ... $oldsymbol{c}(oldsymbol{h}_n) = oldsymbol{r} + oldsymbol{v}_0 + oldsymbol{V}^ op \operatorname{Diag}ig(oldsymbol{b}(oldsymbol{h})ig)oldsymbol{v}$ $D_{n-1}^{\boldsymbol{A}} = \boldsymbol{D}_{n-1}^{\boldsymbol{R}} + \boldsymbol{D}_{n-1}^{\boldsymbol{V}_0} + \boldsymbol{V}^{\top} \operatorname{Diag} (\boldsymbol{b}(\boldsymbol{h}_n)) \boldsymbol{D}_{n-1}^{\boldsymbol{V}}$ $\nabla F(\boldsymbol{h}_n) = \boldsymbol{D}_{n-1}^{\boldsymbol{h}_{-1}} \boldsymbol{u}_{n-1} - \boldsymbol{c}(\boldsymbol{h}_n)$ Set D_n using $\nabla F(h_n)$ $D_n^R = RD_n, D_n^{V_0} = V_0D_n, D_n^V = VD_n$ $\begin{bmatrix} \boldsymbol{B}_n = \boldsymbol{D}_n^\top \left(\boldsymbol{D}_n^{\boldsymbol{V}_0} + \boldsymbol{D}_n^{\boldsymbol{R}} \right) + \left(\boldsymbol{D}_n^{\boldsymbol{V}} \right)^\top \operatorname{Diag} \left(\boldsymbol{b}(\boldsymbol{h}_n) \right) \boldsymbol{D}_n^{\boldsymbol{V}}$ $egin{array}{l} egin{array}{l} egin{array}$

Introduction	Problem formulation	Batch case ○○○○●	Online case	Applications	Conclusion
SMAI MODE 2016					14/33

Convergence theorem

Let assume that:

1. For every $n \in \mathbb{N}^*$, $\{\nabla F(\boldsymbol{h}_n), \boldsymbol{h}_n\} \subset \operatorname{span} \boldsymbol{D}_n$,

2. $\mathbf{R} + \mathbf{V}_0$ is a positive definite matrix.

Then, the following hold:

- $\|\nabla F(h_n)\| \to 0$ and $F(h_n) \searrow F(\tilde{h})$ where \tilde{h} is a critical point of F.
- If *F* is convex, then any sequential cluster point of (*h_n*)_{n≥1} is a minimizer of *F*.
- If *F* is strictly convex, then (*h_n*)_{n≥1} converges to the unique (global) minimizer *ĥ* of *F*.
- If F satisfies the Kurdyka-Łojasiewicz inequality, then the sequence (h_n)_{n≥1} converges to a critical point of F.

Introduction	Problem formulation	Batch case	Online case •oooooooo	Applications	Conclusion
SMAI MODE 2016					15/33

Stochastic majorize-minimize subspace algorithm

Introduction	Problem formulation	Batch case	Online case o●ooooooo	Applications	Conclusion 00
SMAI MODE 2016					16/33

Stochastic approximation of the criterion

Estimate of the objective function at iteration $n \in \mathbb{N}^*$: $(\forall h \in \mathbb{R}^N) \quad \mathcal{F}_n(h) = \frac{1}{2n} \sum_{k=1}^n \|\mathbf{y}_k - \mathbf{X}_k^\top h\|^2 + \Psi(h)$ $= \frac{1}{2} \rho_n - \mathbf{r}_n^\top h + \frac{1}{2} h^\top \mathbf{R}_n h + \Psi(h)$

with $\rho_n = \frac{1}{n} \sum_{k=1}^n \|\mathbf{y}_k\|^2$, $\mathbf{r}_n = \frac{1}{n} \sum_{k=1}^n \mathbf{X}_k \mathbf{y}_k$, and

 $\mathbf{R}_n = \frac{1}{n} \sum_{k=1}^n \mathbf{X}_k \mathbf{X}_k^\top.$

Introduction	Problem formulation	Batch case	Online case ○●○○○○○○○	Applications	Conclusion 00
SMAI MODE 2016					16/33

Stochastic approximation of the criterion

Estimate of the objective function at iteration $n \in \mathbb{N}^*$:

$$\begin{aligned} (\forall \boldsymbol{h} \in \mathbb{R}^N) \quad \mathrm{F}_{\boldsymbol{n}}(\boldsymbol{h}) &= \frac{1}{2n} \sum_{k=1}^n \|\mathbf{y}_k - \mathbf{X}_k^\top \boldsymbol{h}\|^2 + \Psi(\boldsymbol{h}) \\ &= \frac{1}{2} \rho_n - \mathbf{r}_n^\top \boldsymbol{h} + \frac{1}{2} \boldsymbol{h}^\top \mathbf{R}_n \boldsymbol{h} + \Psi(\boldsymbol{h}) \end{aligned}$$

with $\rho_n = \frac{1}{n} \sum_{k=1}^n \|\mathbf{y}_k\|^2$, $\mathbf{r}_n = \frac{1}{n} \sum_{k=1}^n \mathbf{X}_k \mathbf{y}_k$, and

$$\mathbf{R}_n = rac{1}{n} \sum_{k=1}^n \mathbf{X}_k \mathbf{X}_k^{ op}.$$

 How to make the method adaptive to changes in the input statistics?

Introduction	Problem formulation	Batch case	Online case	Applications	Conclusion 00
SMAI MODE 2016					17/33

Stochastic approximation of the criterion

Estimate of the objective function at iteration $n \in \mathbb{N}^*$: $(\forall h \in \mathbb{R}^N) \quad \mathcal{F}_n(h) = \frac{1}{2\overline{\vartheta}_n} \sum_{k=1}^n \vartheta^{n-k} \|\mathbf{y}_k - \mathbf{X}_k^\top h\|^2 + \Psi(h)$ $= \frac{1}{2}\rho_n - \mathbf{r}_n^\top h + \frac{1}{2}h^\top \mathbf{R}_n h + \Psi(h)$

with
$$\rho_n = \frac{1}{\overline{\vartheta}_n} \sum_{k=1}^n \vartheta^{n-k} \|\mathbf{y}_k\|^2$$
, $\mathbf{r}_n = \frac{1}{\overline{\vartheta}_n} \sum_{k=1}^n \vartheta^{n-k} \mathbf{X}_k \mathbf{y}_k$, and

$$\mathbf{R}_n = \frac{1}{\overline{\vartheta}_n} \sum_{k=1}^n \vartheta^{n-k} \mathbf{X}_k \mathbf{X}_k^\top.$$

→ Forgetting factor:

$$\overline{\vartheta}_n = \sum_{k=0}^{n-1} \vartheta^k = \begin{cases} n & \text{if } \vartheta = 1\\ \frac{1-\vartheta^n}{1-\vartheta} & \text{if } \vartheta \in]0,1[\text{,} \end{cases}, \quad \text{and} \quad \vartheta \in]0,1].$$

Introduction	Problem formulation	Batch case	Online case ooo●ooooo	Applications	Conclusion 00
SMAI MODE 2016					18/33

Estimate of the objective function at iteration $n \in \mathbb{N}^*$:

$$(\forall \boldsymbol{h} \in \mathbb{R}^N) \quad \mathrm{F}_{\boldsymbol{n}}(\boldsymbol{h}) = \frac{1}{2\overline{\vartheta}_n} \sum_{k=1}^n \vartheta^{n-k} \| \mathbf{y}_k - \mathbf{X}_k^\top \boldsymbol{h} \|^2 + \Psi(\boldsymbol{h}).$$

1. Find a tractable surrogate for $F_n \rightarrow P_n$ Quadratic tangent majorant

$$(\forall \boldsymbol{h} \in \mathbb{R}^N) \quad \Theta_n(\boldsymbol{h}, \mathbf{h}_n) = \mathcal{F}_n(\mathbf{h}_n) + \nabla \mathcal{F}_n(\mathbf{h}_n)^\top (\boldsymbol{h} - \mathbf{h}_n) \\ + \frac{1}{2} (\boldsymbol{h} - \mathbf{h}_n)^\top \mathbf{A}_n(\mathbf{h}_n) (\boldsymbol{h} - \mathbf{h}_n),$$

where $\mathbf{A}_n(\mathbf{h}) = \mathbf{R}_n + \mathbf{V}_0 + \mathbf{V}^\top \operatorname{Diag} (\mathbf{b}(\mathbf{h})) \mathbf{V} \in \mathbb{R}^{N \times N}$.

Introduction	Problem formulation	Batch case	Online case ○○○●○○○○○	Applications	Conclusion 00
SMAI MODE 2016					18/33

Estimate of the objective function at iteration $n \in \mathbb{N}^*$:

$$(\forall \boldsymbol{h} \in \mathbb{R}^N) \quad \mathrm{F}_{\boldsymbol{n}}(\boldsymbol{h}) = \frac{1}{2\overline{\vartheta}_n} \sum_{k=1}^n \vartheta^{n-k} \| \mathbf{y}_k - \mathbf{X}_k^\top \boldsymbol{h} \|^2 + \Psi(\boldsymbol{h}).$$

- 1. Find a tractable surrogate for F_n
- 2. Minimize in a subspace

$$(\forall n \in \mathbb{N}^*)$$
 $\mathbf{h}_{n+1} \in \operatorname{Argmin}_{\boldsymbol{h} \in \operatorname{span} \mathbf{D}_n} \Theta_n(\boldsymbol{h}, \mathbf{h}_n),$

with $\mathbf{D}_n \in \mathbb{R}^{N \times M_n}$.

→ Stochastic 3MG algorithm :

$$\mathbf{D}_n = \begin{cases} [-\nabla \mathbf{F}_n(\mathbf{h}_n), \mathbf{h}_n, \mathbf{h}_n - \mathbf{h}_{n-1}] & \text{if } n > 1\\ [-\nabla \mathbf{F}_n(\mathbf{h}_1), \mathbf{h}_1] & \text{if } n = 1 \end{cases}$$

Introduction	Problem formulation	Batch case	Online case ooo●ooooo	Applications	Conclusion 00
SMAI MODE 2016					18/33

Estimate of the objective function at iteration $n \in \mathbb{N}^*$:

$$(\forall \boldsymbol{h} \in \mathbb{R}^N) \quad \mathrm{F}_{\boldsymbol{n}}(\boldsymbol{h}) = \frac{1}{2\overline{\vartheta}_n} \sum_{k=1}^n \vartheta^{n-k} \| \mathbf{y}_k - \mathbf{X}_k^\top \boldsymbol{h} \|^2 + \Psi(\boldsymbol{h}).$$

- 1. Find a tractable surrogate for F_n
- 2. Minimize in a subspace
- 3. Perform recursive updates of the second-order statistics

$$\begin{aligned} (\forall n \in \mathbb{N}^*) \qquad \mathbf{r}_n &= \mathbf{r}_{n-1} + \frac{1}{\overline{\vartheta}_n} (\mathbf{X}_n \mathbf{y}_n - \mathbf{r}_{n-1}) \\ \mathbf{R}_n &= \mathbf{R}_{n-1} + \frac{1}{\overline{\vartheta}_n} (\mathbf{X}_n \mathbf{X}_n^\top - \mathbf{R}_{n-1}). \end{aligned}$$

Introduction	Problem formulation	Batch case	Online case 0000€0000	Applications	Conclusion 00
SMAI MODE 2016					19/33

$$\begin{split} \mathbf{r}_{0} &= \mathbf{0}, \mathbf{R}_{0} = \mathbf{0} \\ \text{Initialize } \mathbf{D}_{0}, \mathbf{u}_{0} \\ \mathbf{h}_{1} &= \mathbf{D}_{0} \mathbf{u}_{0}, \mathbf{D}_{0}^{\mathbf{R}} = \mathbf{0}, \mathbf{D}_{0}^{V_{0}} = V_{0} \mathbf{D}_{0}, \mathbf{D}_{0}^{V} = V \mathbf{D}_{0} \\ \text{For all } n &= 1, \dots \\ \\ \mathbf{F}_{n} &= \mathbf{r}_{n-1} + \frac{1}{\vartheta_{n}} (\mathbf{X}_{n} \mathbf{y}_{n} - \mathbf{r}_{n-1}) \\ \mathbf{c}_{n}(\mathbf{h}_{n}) &= \mathbf{r}_{n} + \mathbf{v}_{0} + \mathbf{V}^{\top} \operatorname{Diag} \left(\mathbf{b}(\mathbf{h}_{n}) \right) \mathbf{v} \\ \mathbf{D}_{n-1}^{\mathbf{A}} &= \left(1 - \frac{1}{\vartheta_{n}} \right) \mathbf{D}_{n-1}^{\mathbf{R}} + \frac{1}{\vartheta_{n}} \mathbf{X}_{n} (\mathbf{X}_{n}^{\top} \mathbf{D}_{n-1}) \\ &\quad + \mathbf{D}_{n-1}^{V_{0}} + \mathbf{V}^{\top} \operatorname{Diag} \left(\mathbf{b}(\mathbf{h}_{n}) \right) \mathbf{D}_{n-1}^{V} \\ \mathbf{\nabla}_{n}(\mathbf{h}_{n}) &= \mathbf{D}_{n-1}^{\mathbf{A}} \mathbf{u}_{n-1} - \mathbf{c}_{n} (\mathbf{h}_{n}) \\ \mathbf{R}_{n} &= \mathbf{R}_{n-1} + \frac{1}{\vartheta_{n}} (\mathbf{X}_{n} \mathbf{X}_{n}^{\top} - \mathbf{R}_{n-1}) \\ \text{Set } \mathbf{D}_{n} \text{ using } \nabla_{n}^{\mathbf{F}} (\mathbf{h}_{n}) \\ \mathbf{D}_{n}^{\mathbf{R}} &= \mathbf{R}_{n} \mathbf{D}_{n}, \mathbf{D}_{n}^{V_{0}} = V_{0} \mathbf{D}_{n}, \mathbf{D}_{n}^{V} = V \mathbf{D}_{n} \\ \mathbf{B}_{n} &= \mathbf{D}_{n}^{\top} (\mathbf{D}_{n}^{\mathbf{R}} + \mathbf{D}_{n}^{V_{0}}) + \left(\mathbf{D}_{n}^{V} \right)^{\top} \operatorname{Diag} \left(\mathbf{b}(\mathbf{h}_{n}) \right) \mathbf{D}_{n}^{V_{n}} \\ \mathbf{u}_{n} &= \mathbf{B}_{n}^{\dagger} \mathbf{D}_{n}^{\top} \mathbf{c}_{n} (\mathbf{h}_{n}) \\ \mathbf{h}_{n+1} &= \mathbf{D}_{n} \mathbf{u}_{n} \end{aligned}$$

Introduction	Problem formulation	Batch case	Online case ○○○○●○○○	Applications	Conclusion 00
SMAI MODE 2016					20/33

Computational complexity

• If $V = I_N$, number of multiplications per iteration:

 $N^2(4M_n+Q)/2,$

where N length of h, Q column dimension of \mathbf{X}_n , M_n subspace dimension, and $N \gg \max\{M_n, M_{n-1}, Q\}$.

Introduction	Problem formulation	Batch case	Online case ○○○○●○○○	Applications	Conclusion
SMAI MODE 2016					20/33

Computational complexity

• If $V = I_N$, number of multiplications per iteration:

 $N^2(4M_n+Q)/2,$

where N length of h, Q column dimension of \mathbf{X}_n , M_n subspace dimension, and $N \gg \max\{M_n, M_{n-1}, Q\}$.

• If $V \neq I_N$, number of multiplications per iteration:

$$N(P(M_n + M_{n-1} + 1) + N(4M_n + Q)/2),$$

upper bound on the complexity induced by linear operators

where P line dimension of V.

Introduction	Problem formulation	Batch case	Online case ○○○○●○○○	Applications	Conclusion
SMAI MODE 2016					20/33

Computational complexity

• If $V = I_N$, number of multiplications per iteration:

 $N^2(4M_n+Q)/2,$

where N length of h, Q column dimension of \mathbf{X}_n , M_n subspace dimension, and $N \gg \max\{M_n, M_{n-1}, Q\}$.

• If $V \neq I_N$, number of multiplications per iteration:

$$N(P(M_n + M_{n-1} + 1) + N(4M_n + Q)/2),$$

upper bound on the complexity induced by linear operators

where P line dimension of V.

Further complexity reduction possible by taking into account the structure of D_n,

e.g. 3MG, $V = I_N$, $Q = 1 \equiv$ complexity of RLS.

Introduction	Problem formulation	Batch case	Online case oooooo●oo	Applications	Conclusion
SMAI MODE 2016					21/33

Convergence results: Assumptions

Let $(\Omega, \mathcal{F}, \mathsf{P})$ be the underlying probability space. For every $n \in \mathbb{N}^*$, let $\mathcal{X}_n = \sigma((\mathbf{X}_k, \mathbf{y}_k)_{1 \leq k \leq n})$ be the sub-sigma algebra of \mathcal{F} generated by $(\mathbf{X}_k, \mathbf{y}_k)_{1 \leq k \leq n}$.

- 1. $\mathbf{R} + \mathbf{V}_0$ is a positive definite matrix.
- 2. $((\mathbf{X}_n, \mathbf{y}_n))_{n \ge 1}$ is a stationary ergodic sequence and, for every $n \in \mathbb{N}^*$, the elements of \mathbf{X}_n and the components of \mathbf{y}_n have finite fourth-order moments.
- 3. $(\forall n \in \mathbb{N}^*) \mathsf{E}(\|\mathbf{y}_{n+1}\|^2 | \mathcal{X}_n) = \varrho$, $\mathsf{E}(\mathbf{X}_{n+1}\mathbf{y}_{n+1} | \mathcal{X}_n) = r$ and $\mathsf{E}(\mathbf{X}_{n+1}\mathbf{X}_{n+1}^\top | \mathcal{X}_n) = R$.
- 4. For every $n \in \mathbb{N}^*$, $\{\nabla F_n(\mathbf{h}_n), \mathbf{h}_n\} \subset \operatorname{span} \mathbf{D}_n$.
- 5. \mathbf{h}_1 is \mathcal{X}_1 -measurable and, for every $n \in \mathbb{N}^*$, \mathbf{D}_n is \mathcal{X}_n -measurable.

Introduction	Problem formulation	Batch case	Online case ooooooo●o	Applications	Conclusion 00
SMAI MODE 2016					22/33

Convergence results: Theorem

- $(\rho_n)_{n \ge 1}$, $(\mathbf{R}_n)_{n \ge 1}$, and $(\mathbf{r}_n)_{n \ge 1}$ converge almost surely to ϱ , \boldsymbol{R} and \boldsymbol{r} , respectively.
- The set of cluster points of (h_n)_{n≥1} is almost surely a nonempty compact connected set.
- Any element of this set is almost surely a critical point of *F*.
- If the functions $(\psi_s)_{1 \leq s \leq S}$ are convex, then the sequence $(\mathbf{h}_n)_{n \geq 1}$ converges P-a.s. to the unique (global) minimizer of F.

Introduction	Problem formulation	Batch case	Online case ○○○○○○○●	Applications	Conclusion
SMAI MODE 2016					23/33

Convergence results : Rate analysis

Assume that Ψ is twice differentiable. Let $\epsilon \in]0, +\infty[$ be such that $\epsilon I_N \prec R + V_0$. • There exists $n_{\epsilon} \in \mathbb{N}^*$ such that, for every $n \ge n_{\epsilon}$, $F_n(\mathbf{h}_{n+1}) - \inf F_n \leq \theta_n (F_n(\mathbf{h}_n) - \inf F_n)$ where $\theta_n = 1 - (1 + \epsilon)^{-1} \tilde{\theta}_n$, with: $\widetilde{\theta}_n = \frac{\left(\nabla F_n(\mathbf{h}_n)\right)^\top \mathbf{D}_n (\mathbf{D}_n^\top \mathbf{A}_n(\mathbf{h}_n) \mathbf{D}_n)^\dagger \mathbf{D}_n^\top \nabla F_n(\mathbf{h}_n)}{\left(\nabla F_n(\mathbf{h}_n)\right)^\top \left(\nabla^2 F_n(\mathbf{h}_n)\right)^{-1} \nabla F_n(\mathbf{h}_n)},$ Let $\underline{\sigma}_n$ (resp. $\overline{\sigma}_n$) denote the minimum (resp. maximum) eigenvalue of the Hessian of F_n at h_n . • $\theta_n \in [\theta_n, \overline{\theta}_n]$ with

$$\begin{cases} \underline{\theta}_n = 1 - (1+\epsilon)^{-1} ||| \left(\mathbf{A}_n(\mathbf{h}_n)\right)^{-\frac{1}{2}} \left(\nabla^2 \mathbf{F}_n(\mathbf{h}_n)\right)^{\frac{1}{2}} |||^2 > 0, \\ \overline{\theta}_n = \frac{1}{1+\epsilon} \left(\left(\frac{\overline{\sigma}_n - \underline{\sigma}_n}{\overline{\sigma}_n + \underline{\sigma}_n}\right)^2 + \epsilon \right) < 1. \end{cases}$$

Introduction	Problem formulation	Batch case	Online case	Applications •ooooooo	Conclusion 00
SMAI MODE 2016					24/33

Application to filter identification problems

Introduction	Problem formulation	Batch case	Online case	Applications	Conclusion
SMAI MODE 2016					25/33

OBSERVATION MODEL

$$\boldsymbol{y} = S(\overline{\boldsymbol{h}})\boldsymbol{x} + \boldsymbol{w}$$

- $\boldsymbol{x} \in \mathbb{R}^{L}$ large size original image ($L = 4096^{2}$),
- $\overline{\mathbf{h}} \in \mathbb{R}^N$ unknown two-dimensional blur kernel ($N = 21^2$),
- $S(\overline{h})$ Hankel-block Hankel matrix such that $S(\overline{h})x = X\overline{h}$,
- ► $w \in \mathbb{R}^L$ realization of white $\mathcal{N}(0, 0.03^2)$ noise (BSNR = 25.7 dB)
- $\boldsymbol{y} \in \mathbb{R}^L$ blurred and noisy image.

Introduction	Problem formulation	Batch case	Online case	Applications	Conclusion 00
SMAI MODE 2016					25/33

OBSERVATION MODEL

$$\boldsymbol{y} = S(\overline{\boldsymbol{h}})\boldsymbol{x} + \boldsymbol{w}$$

- $\boldsymbol{x} \in \mathbb{R}^{L}$ large size original image ($L = 4096^{2}$),
- $\overline{h} \in \mathbb{R}^N$ unknown two-dimensional blur kernel ($N = 21^2$),
- ► $S(\overline{h})$ Hankel-block Hankel matrix such that $S(\overline{h})x = X\overline{h}$,
- ► $w \in \mathbb{R}^L$ realization of white $\mathcal{N}(0, 0.03^2)$ noise (BSNR = 25.7 dB)
- $\boldsymbol{y} \in \mathbb{R}^L$ blurred and noisy image.
- ⇒ Minimization of a penalized MSE criterion: $\mathbf{y}_n \in \mathbb{R}^Q$ and $\mathbf{X}_n^\top \in \mathbb{R}^{Q \times N}$: Qlines of \boldsymbol{y} and $\boldsymbol{X}, \vartheta = 1$, and Ψ isotropic penalization on the gradient of \mathbf{h} , i.e. $S = N, (\forall s \in \{1, \dots, S\}) P_s = 2, \psi_s : u \mapsto \lambda \sqrt{1 + u^2/\delta^2}, (\lambda, \delta) \in]0, +\infty[^2.$

Introduction	Problem formulation	Batch case	Online case	Applications	Conclusion
SMAI MODE 2016					26/33

Original blur kernel.

Estimated blur kernel, relative error 0.064.

The regularization parameters are optimized manually.

000	00000	00000	000000000	00000000	00	
Introduction	Problem formulation	Batch case	Online case	Applications	Conclusion	ſ

Comparison of stochastic 3MG algorithm, SGD algorithm with decreasing stepsize $\propto n^{-1/2}$, and Finito/RDA algorithms with constant stepsizes.

The stepsize values in SGD/Finito/RDA methods are optimized manually.
The S3MG algorithm leads to a faster convergence.

Effect of the block size Q on the convergence speed of S3MG.

▶ The best trade-off is obtained for $Q = 256 \times 256$.

Introduction	Problem formulation	Batch case	Online case	Applications	Conclusion 00
SMAI MODE 2016					29/33

Application to sparse adaptive filtering

 $(\forall n \in \mathbb{Z}) \quad \overline{h}_n \in \mathbb{R}^N$ sparse filter, $y_n \in \mathbb{R}$, $w_n \in \mathbb{R}$.

Introduction	Problem formulation	Batch case	Online case	Applications	Conclusion 00
SMAI MODE 2016					29/33

Application to sparse adaptive filtering

 $(\forall n \in \mathbb{Z}) \quad \overline{h}_n \in \mathbb{R}^N$ sparse filter, $y_n \in \mathbb{R}$, $w_n \in \mathbb{R}$.

\Rightarrow Minimization of a penalized MSE criterion:

 $\stackrel{\rightsquigarrow}{\rightarrow} \boldsymbol{X}_n = [x(n-N+1), \dots, x(n)]^\top \in \mathbb{R}^N ; \\ \stackrel{\rightsquigarrow}{\rightarrow} \text{Smoothed } \ell_0 \text{ regularization with } S = N, \boldsymbol{v}_0 = \boldsymbol{0}, \boldsymbol{V}_0 = \boldsymbol{O}_N, \text{ and} \\ (\forall s \in \{1, \dots, N\}) \ P_s = 1, \ \boldsymbol{v}_s = 0, \ \boldsymbol{V}_s \in \mathbb{R}^{1 \times N} \text{ the } s\text{-th vector of} \\ \text{the canonical basis of } \mathbb{R}^N \text{ and } \psi_s : u \mapsto \lambda(1 - \exp(-u^2/(2\delta^2))).$

SMALMODE 2016	
	30/33

Simulation results

- (\overline{h}_n) : Time-variant linear system with 200 sparse coefficients,
- $(x(n))_n$: Input sequence of 5000 random independent variables uniformly distributed on $\{-1, +1\}$,
 - $(w_n)_n$: White Gaussian noise with zero mean and variance 0.05.

SMALMODE 2016	
	30/33

Simulation results

- (\overline{h}_n) : Time-variant linear system with 200 sparse coefficients,
- $(x(n))_n$: Input sequence of 5000 random independent variables uniformly distributed on $\{-1,+1\},$
 - $(w_n)_n$: White Gaussian noise with zero mean and variance 0.05.

Introduction	Problem formulation	Batch case	Online case	Applications ○○○○○○●	Conclusion 00
SMAI MODE 2016					31/33

Estimation error along time, for various sparse adaptive filtering strategies

- For each tested methods, tuning parameters optimized manually.
- S3MG leads to the minimal estimation error, and benefits from good tracking properties.

Introduction	Problem formulation	Batch case	Online case	Applications	Conclusion ●○
SMAI MODE 2016					32/33

Conclusion

Solution to online penalized MSE problems?

- \Rightarrow Proposition of a novel stochastic MM subspace algorithm.
 - ✓ No need to tune up a stepsize (in particular, no decreasing condition on a stepsize);
 - \checkmark Can be used in an adaptive context thanks to a forgetting factor ;
 - ✓ Proven guarantees of convergence ;
 - $\checkmark\,$ Analysis of the convergence rate and of the complexity ;
 - $\checkmark\,$ Good numerical performance w.r.t. state-of-the art methods.

Introduction	Problem formulation	Batch case	Online case	Applications	Conclusion ○●
SMAI MODE 2016					33/33

Some references

E. Chouzenoux and JC. Pesquet. A Stochastic Majorize-Minimize Subspace Algorithm for Online Penalized Least Squares Estimation. Technical report, 2015. Available at http://arxiv.org/abs/1512.08722.
M. Pereyra, P. Schniter, E. Chouzenoux, JC. Pesquet, JY. Tourneret, A. O. Hero and S. McLaughlin. A Survey of Stochastic Simulation and Optimization Methods in Signal Processing. IEEE Journal of Selected Topics in Signal Processing, Vol. 10, No. 2, pp. 224-241, March 2016.
E. Chouzenoux, A. Jezierska, JC. Pesquet and H. Talbot. A Majorize-Minimize Subspace Approach for $\ell_2 - \ell_0$ Image Regularization. SIAM Journal on Imaging Science, Vol. 6, No. 1, pp. 563-591, 2013.
E. Chouzenoux, J. Idier and S. Moussaoui. A Majorize-Minimize Strategy for Subspace Optimization Applied to Image Restoration. IEEE Transactions on Image Processing, Vol. 20, No. 18, pp. 1517-1528, June 2011.

Introduction	Problem formulation	Batch case	Online case	Applications	Conclusion ○●
SMAI MODE 2016					33/33

Some references

E. Chouzenoux and JC. Pesquet. A Stochastic Majorize-Minimize Subspace Algorithm for Online Penalized Least Squares Estimation. Technical report, 2015. Available at http://arxiv.org/abs/1512.08722.	
M. Pereyra, P. Schniter, E. Chouzenoux, JC. Pesquet, JY. Tourneret, A. O. Hero and S. McLaughlin. <i>A Survey of Stochastic Simulation and Optimization Methods in Signal Processing.</i> IEEE Journal of Selected Topics in Signal Processing, Vol. 10, No. 2, pp. 224-241, March 2016.	
E. Chouzenoux, A. Jezierska, JC. Pesquet and H. Talbot. A Majorize-Minimize Subspace Approach for $\ell_2 - \ell_0$ Image Regularization. SIAM Journal on Imaging Science, Vol. 6, No. 1, pp. 563-591, 2013.	
E. Chouzenoux, J. Idier and S. Moussaoui. <i>A Majorize-Minimize Strategy for Subspace Optimization Applied to Image Restoration.</i> IEEE Transactions on Image Processing, Vol. 20, No. 18, pp. 1517-1528, June 2011.	

Thank you !