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The Environment
Algorithmic Background

Reality

- One almost never sees asymptotics

- One almost never reaches a solution but even 1%
improvement can be extremely valuable

- Because of their complexity, simulation is often required

- Because of simulation derivatives are often not available

- It is always better to obtain and use derivatives if you can.

- Simulated Annealing, Genetic Algorithms etc are usually for
the ignorant or the desperate or both.
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The Environment
Algorithmic Background

Some remarks:

1 the function can have many local minima,

2 the value of the function can include both noise and error

3 the evaluation of the function can be expensive,

4 the domain of the function can be unknown.
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The Environment
Algorithmic Background

Standard Model in the differentiable case

Typical trust region or line search method builds linear or
quadratic model of the objective function f .

The model has to satisfy Taylor-like error bounds.
Second Order

|f (x)−m(x)| ≤ O(∆3)

|∇f (x)−∇m(x)| ≤ O(∆2)

|∇2f (x)−∇2m(x)| ≤ O(∆)

In fact it typically is a first (or second) order Taylor series
approximation.

In derivative based methods constants in O depend only on f
(and its derivatives).

By reducing the trust region or step size one guarantees better
accuracy.
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The Environment
Algorithmic Background

Abstraction of required bounds for derivative free

f ∈ C 1 and ∇f Lipschitz continuous on {x |fk ≤ f0}.
∆k bounded above.

A model is called:
Fully Linear on B(x ,∆) iff

|f (x)−m(x)| ≤ κef ∆2

|∇f (x)−∇m(x)| ≤ κeg∆

for all x in B(x ,∆)

A Fully Linear model that is suitably minimized replaces the
Cauchy Point.
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The Environment
Algorithmic Background

Abstraction of required bounds

f ∈ C 2 and ∇2f Lipschitz continuous on {x |fk ≤ f0}.
∆k bounded above.

A model is called:
Fully Quadratic on B(x ,∆) iff

|f (x)−m(x)| ≤ κef ∆3

|∇f (x)−∇m(x)| ≤ κeg∆2

|∇2f (x)−∇2m(x)| ≤ κeh∆

for all x in B(x ,∆)
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The Environment
Algorithmic Background

So what about the case without derivatives?

- Model depends on previous iterates!

- Geometry matters

In derivative free methods we use sample based models; e.g.,
interpolation or regression or pattern-based methods.

The O in Taylor-like bounds depends not only on f , but also
on the geometry of the sample set.

We need to have some constant characterizing the quality of
the sample set(automatic in pattern-based methods) .

We need to control this constant to keep it uniformly
bounded.
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The Environment
Algorithmic Background

Basic Algorithm when derivatives available (unconstrained)
Initialize: x0,∆

Compute Model: mk( )

Compute Step: Compute sk from

min
‖s‖≤∆

mk(xk + s)

Trust-region Update: ρ = f (xk )−f (xk+sk )
mk (xk )−mk (xk+sk )

If ρ > 0.75 ∆← 2.0∆

If 0.25 < ρ < 0.75 ∆← ∆

If ρ < 0.25 ∆← 0.5∆

Accept xk + sk

Accept xk + sk

Reject xk + sk

NOTE: We always reduce TR when we reject
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The Environment
Algorithmic Background

Model decrease at the Cauchy point

Fundamental result that drives convergence:

mk(xk)−mk(xC
k ) ≥ 1

2‖gk‖min

[
‖gk‖
βk

,∆k

]
,

where
gk = ∇xmk (xk ), βk = 1 + max

x∈Bk
‖∇xxmk (x)‖

xC
k (t) = {x | x = xk − tgk , t ≥ 0 and x ∈ Bk} and xC

k = argmin mk (xC
k (t)).

⇒ Define
sufficient model decrease

⇔
mk(xk)−mk(xk + sk) ≥ κ‖gk‖min

[
‖gk‖
βk

,∆k

]
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The Environment
Algorithmic Background

Trust-region Methods without derivatives

Use interpolation/regression models that mimic the Taylor
series expansions.

We never reduce the trust region radius ∆k if the sample set
is badly-poised (has bad geometry).

Incorporate a stationarity condition (first or second order)
when ’stationarity’ of the model is sufficiently small.

−→ Iterative process with successive contractions of ∆k .

Converged when the radius is small enough.

The problem only has to be reasonably approximated by a
sufficiently smooth problem.
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The Environment
Algorithmic Background

Grey-box MINLP

min
x ,y

S(x , y) + f (x , y)

subject to

φ(x , y) ≤ 0

Ax + By ≤ b

x ∈ [xL, xU ]

y ∈ {0, 1}q,

x ∈ Rp, y ∈ {0, 1}q are decision variables

S : Rn → R is a black-box function.

f : Rp+q → R and φ : Rp+q → Rr are closed-form functions.

assumption: S (for relaxed y), f , and φ are twice
differentiable;

Define F (x , y) = S(x , y) + f (x , y)
11
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The Environment
Algorithmic Background

Trust region methods for grey-box MINLP

Subproblem trust region and constraint

1 center (xk , yk): select from the previous iterate.

2 trust region for x : a ball centered at xk (normally) in l∞, i.e
TR is a box [x , x ].

3 trust region subproblem constraint for y : local branching
constraint to limit the number of flips in binary variables∑

{j : yk
j =0}

yj +
∑

{j : yk
j =1}

(1− yj) ≤ k.
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The Environment
Algorithmic Background

How to avoid redundant space exploration: no-good cuts

Suppose the following situation
1 We trust our model in the current region
2 We have a current best point (x ′, y ′)
3 We cannot improve the current point.

Need to look for other local minima

1 Additional trust region subproblem constraint for y : local branching
constraint to act as a cut∑

{j : yk
j =0}

yj +
∑

{j : yk
j =1}

(1− yj) ≥ k + 1.

2 We will have a bunch of cuts, one for each “sufficiently explored”
region.

3 As soon as a new current point is found, we can restore the local
branching constraint.

4 We use no-good cuts to mimic the pruning process of

branch-and-bound.
13



The Environment
Algorithmic Background

Trust region methods for grey-box MINLP

Model for f

1 Taylor series approximation.

2 For example

fM(x , y) = a + bT x + cT y +
1

2
(x , y)T Ω (x , y).

Model for S

1 Linear or quadratic function

2

SM(x , y) = α + βT x + γT y +
1

2
(x , y)T Γ (x , y).

3 Found by regression or interpolation.
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The Environment
Algorithmic Background

Trust region methods for grey-box MINLP

Putting it all together:the overall trust region subproblem

min
x ,y

SM(x , y) + fM(x , y)

subject to

φ(x , y) ≤ 0

Ax + By ≤ b

x ∈ [xL, xU ] ∩ [x , x ]

y ∈ {0, 1}q∑
{j : y∗j =0}

yj +
∑

{j : y∗j =1}

(1− yj) ≤ k.
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The Environment
Algorithmic Background

Global Convergence

For simplicity of explanation I will assume that the constraints

φ(x , y) ≤ 0

Ax + By ≤ b

are absent.
We first need to define a modified version of the Cauchy step.
Since we have a mixture of discrete and continuous variables we
consider such a direction for fixed discrete variables.
Thus, we define the modified Cauchy step sy,C

k , for fixed y

ty,C

k = argmint≥0:xk−tgk∈B(xk ;y ;∆k )∩[xL,xU ] mk(xk − tgk , y),

B(xk ; y ; ∆k) is the TR, y is fixed, mk(xk , y) is the current model for

fM (xk , y) + SM (xk , y) and gk = ∇xmk(xk , y) is the gradient wrt x .

16
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The Environment
Algorithmic Background

Global Convergence: Special Issues

We define our fully linear or fully quadratic models in x and y , as if
the y are relaxed.
The Algorithm and theory are developed for fixed y .
But when we solve the trust region subproblem for y not fixed we
solve it as a mixed integer problem.
So eventually we have the correct y and the correct (local)
solution.
But note that we may sometimes need an additional evaluation of
truth and this could take at least n function evaluations

Generally constraints are included in the subproblem and Cauchy
point definition
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The Algorithm –1st order version

Step 0: Initialization. Choose a FL class of models and a
corresponding MIA. Choose x0, y0 (feasible) and ∆max , ∆icb

0 ∈ (0,∆max),

and a initial model micb
0 . and the constants η0, η1, γ, γinc , εc , β, µ, and ω with

0 ≤ η0 ≤ η1 < 1 (with η1 6= 0), 0 < γ < 1 < γinc , εc > 0, µ > β > 0, and

ω ∈ (0, 1). Set k = 0.

Step 1: Criticality test. If ‖gm,inc
k ‖ > εc then mk = micb

k and ∆k = ∆icb
k .

Otherwise call the MIA to certify micb
k is FL on B(xk ; y ; ∆icb

k ).
If g

m,inc
k

≤ εc and at least one of

the model micb
k is not certifiably FL on B(xk ; y ; ∆icb

k ),

∆icb
k > µ‖gm,inc

k
‖,

holds then apply a criticality step algorithm to construct a model that is FL on a suitably
small region, the ball B(xk ; y ; ∆̃k ), for some ∆̃k ∈ (0, µ‖g̃k‖]

Otherwise set mk = micb
k and ∆k = ∆icb

k .

Step 2: Step calculation. Choose a step sk that (sufficiently)
reduces the model mk(x , y) (approximate CP) such
that xk + sk ∈ Bk(xk ; y ; ∆k).
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The Algorithm (continued)

Step 3: Acceptance of the trial point. Compute F (xk + sk , y)

and ρk = F (xk ,y)−F (xk+sk ,y)
mk (xk ,y)−mk (xk+sk ,y) .

If ρk > η1 or ρk > η0 and mk is FL on B(xk ; y ; ∆k),
then xk+1 = xk + sk , and the model is updated;
otherwise the model and the iterate remain
unchanged.

Step 4: Model improvement. If ρk < η1 use MIA to
attempt to certify that mk is FL on B(xk ; y ; ∆k).
If such a certificate is not obtained, we say that mk is not
certifiably FL and make suitable improvement steps.

Define micb
k+1 to be the (possibly improved) model.
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The Algorithm (continued)

Step 5: Possible second step calculation. As long as xk+1 6= xk .
Choose a step s̃k that (sufficiently) reduces the
model mk(xk+1, yk) such that
(xk+1, yk) + s̃k ∈ Bk(xk ; yk ; ∆k). Note y is not fixed
Set (xk+1, yk+1) = (xk+1, yk) + s̃k

Step 6: Trust-region radius update. Set

∆icb
k+1 ∈


[∆k ,min{γinc∆k ,∆max}] if ρk ≥ η1,
{γ∆k} if ρk < η1 and mk is FL,
{∆k} if ρk < η1 and mk

is not certifiably fully linear.

Increment k by one and go to Step 1.

Note: the model-improvement algorithm to improve the model
until it is fully linear on the required trust region can be done in a
finite, uniformly bounded number of steps .
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The Algorithm (continued)
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Salient points

In general terms the basis for convergence is:

1 Do at least as well as (a fixed fraction of ) the Cauchy point.
(the minimum of the model in the ”steepest descent”
direction within the trust region)

2 Manage the size of the trust region (delta) appropriately

3 Have consistency between F and m

4 Because of 3 we want to define the Cauchy point, guarantee
the convergence, and do the trust region management, etc for
fixed y

5 Solve the subproblem (now the y is not fixed) using, for
example Bonmin. Its solution should eventually be better than
the value for the Cauchy point for the fixed y .

Iterating, eventually will have the right y and converge to the
solution!
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Numerical Results

Solved about 60 test problems for which optima could be directly
verified (<= 10 variables of each type).

- Typically did as well as Bonmin or better

- Always reaches a local solution and usually very fast

- Can do worse than SCIP when scip converges

- Consistently much better than NOMAD as one would expect

- But remember that there are discrete issues.

- And we still have plenty of work to do!.
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Numerical Results: History Matching

50 layers of 2
′

with 60 × 220 cells 20
′

× 10
′

Up-scaled to 30 × 110 × 25 cells of 80
′

× 40
′

× 4
′

10 yrs production: 1 injector well, 1 − 4 producers.

Optimize the number of wells and their locations to maximize the NPV of the field.
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Numerical Results (continued)

Number of variables being set is 14 continuous and 4 binary variables

5 10 15 20 25 30 35
1

1.5

2

2.5

3

3.5

4
Nb of producers along iterations

Simulations

N
b

 o
f 

p
ro

d
u

c
e

rs

Nomad

TR basic

TR no good cut

TR local branching
no good cut

5 10 15 20 25 30 35

-250

-200

-150

-100

-50

0

50

100

150

200
 NPV along iterations - NPVmax =  247M$

Simulations

- 
N

P
V

 (
M

$
)

25



The Environment
Algorithmic Background

Numerical Results Compare NOMAD solutions & ours

Run with 3 different tunings. The initial configuration is displayed at top left.
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Numerical Results (continued)
Number of variables being set is 4 continuous and 8 binary variables
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Numerical Results (continued)
Number of variables being set is 4 continuous and 8 binary variables
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