Projections alternées pour des contraintes de convexité généralisées

Xavier Dupuis

LUISS University - Rome

Journées SMAI-MODE 2016 Toulouse, 23-25 mars

travail en collaboration avec Guillaume Carlier (Paris-Dauphine)

Outline

Motivation and assumptions

Projection problems over *b*-convex functions

Dykstra's algorithm and numerical results

Outline

Motivation and assumptions

Projection problems over *b*-convex functions

Dykstra's algorithm and numerical results

・ロト・日本・日本・日本・日本・日本

An example

The following problem arises in economics [Rochet, Choné '98]:

$$\min_{\substack{u \text{ convex} \\ u \ge 0}} \int \left[c \left(\nabla u(x) \right) - x \cdot \nabla u(x) + u(x) \right] d\mu(x)$$

Convexity constraint

- arises in various contexts (e.g. Newton's least resistance)
- no tractable Euler-Lagrange equation
- challenging for numerical methods: [Carlier et al. '01], ..., [Ekeland, Moreno-Bromberg '10], [Oberman '13], [Mérigot, Oudet '14], [Mirebeau '15]

э

A generalization

Definition (*b*-convexity)

A function u is b-convex if for some function v and for all x

$$u(x) = \sup_{y \in Y} \{b(x, y) - v(y)\}$$

This notion is crucial in optimal transport [Gangbo, McCann '96]. For $b(x, y) = x \cdot y$, we recover the notion of convexity.

э

A generalization

Definition (*b*-convexity)

A function u is b-convex if for some function v and for all x

$$u(x) = \sup_{y \in Y} \{b(x, y) - v(y)\}$$

This notion is crucial in optimal transport [Gangbo, McCann '96]. For $b(x, y) = x \cdot y$, we recover the notion of convexity.

A generalization

Definition (*b*-convexity)

A function u is b-convex if for some function v and for all x

$$u(x) = \sup_{y \in Y} \{b(x, y) - v(y)\}$$

This notion is crucial in optimal transport [Gangbo, McCann '96]. For $b(x, y) = x \cdot y$, we recover the notion of convexity.

b-convexity constraints

- arise in economics [Carlier '01]
- the convexity of {u b-convex} requires assumptions on b [Figalli, Kim, McCann '11]
- no numerical method so far

The principal-agent problem

A principal (e.g. monopolist) faces

- ► a population of agents: agents of type x ∈ X are present according to a distribution dµ(x);
- ► a range of products: products of type y ∈ Y have value b(x, y) for agents of type x and cost c(y) for the principal.

She is looking for

▶ a contract menu (y, p): $X \to Y \times \mathbb{R} \cup \{+\infty\}$

which specifies that

• agents x buy the product y(x) at the price p(x)

and which maximizes her profit $\int_X [p(x) - c(y(x))] d\mu(x)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 • • • • • •

Incentive compatibility constraint

The utility (to be maximized) of agents of type x is

- b(x, y) p for buying the product y at the price p, or
- zero for not buying anything (outside option).

Incentive compatibility constraint

The utility (to be maximized) of agents of type x is

- b(x, y) p for buying the product y at the price p, or
- zero for not buying anything (outside option).

Adverse selection

•

Agents actually behave according to a contract menu (y, p) if it is incentive compatible and provide non-negative utility:

$$b(x, y(x)) - p(x) \ge b(x, y(x')) - p(x') \quad \forall (x, x'), \qquad (IC)$$

$$b(x, y(x)) - p(x) \ge 0 \qquad \forall x. \qquad (IR)$$

The principal's problem is then the following optimization problem:

$$\min_{(y,p)} \int_X \left[c(y(x)) - p(x) \right] d\mu(x) \quad \text{subject to (IC)-(IR)}.$$

Change of variables

Given (y, p), we define u by u(x) := b(x, y(x)) - p(x) for all x. The incentive compatibility constraint (IC) becomes

$$u(x') - u(x) \ge b(x', y(x)) - b(x, y(x)) \quad \forall (x, x')$$
 (IC')

If (y, u) satifies (IC'), then

•
$$u(x) = \sup_{y} \{b(x, y) - v(y)\}$$
 for $v(y(x)) := p(x)$,

• *u* is *b*-convex, $\nabla u(x) = \frac{\partial b}{\partial x}(x, y(x))$ if *u* is differentiable at *x*.

Change of variables

Given (y, p), we define u by u(x) := b(x, y(x)) - p(x) for all x. The incentive compatibility constraint (IC) becomes

$$u(x') - u(x) \ge b(x', y(x)) - b(x, y(x)) \quad \forall (x, x')$$
 (IC')

If (y, u) satifies (IC'), then

•
$$u(x) = \sup_{y} \{b(x, y) - v(y)\}$$
 for $v(y(x)) := p(x)$,

• *u* is *b*-convex, $\nabla u(x) = \frac{\partial b}{\partial x}(x, y(x))$ if *u* is differentiable at *x*.

Assumption 1 The *b*-exponential map y_b is well defined by $y = y_b(x, q) \Leftrightarrow q = \frac{\partial b}{\partial x}(x, y).$

Given (y, u), we define q by $q(x) := \frac{\partial b}{\partial x}(x, y(x))$ for all x, we replace y(x) by $y_b(x, q(x))$ in (IC') and we introduce

$$\Gamma_b(x',x,q) := b(x',y_b(x,q)) - b(x,y_b(x,q)).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

The convexity issue

We therefore consider, more generaly, the following problem:

$$\min_{(u,q)} \int_{X} L(x, u(x), q(x)) dx \quad \text{subject to}$$
$$u(x') - u(x) \ge \Gamma_b(x', x, q(x)) \quad \forall (x, x') \quad (\mathsf{IC}'')$$

It is convex if $L(x, \cdot, \cdot)$ is convex for all x and if b satisfies Assumption 2 The function $\Gamma_b(x', x, \cdot)$ is convex for all x, x'. [Figalli, Kim, McCann '11], [Carlier, D. '15]

The convexity issue

We therefore consider, more generaly, the following problem:

$$\min_{(u,q)} \int_{X} L(x, u(x), q(x)) dx \text{ subject to}$$
$$u(x') - u(x) \ge \Gamma_b(x', x, q(x)) \quad \forall (x, x')$$
(IC")

It is convex if $L(x, \cdot, \cdot)$ is convex for all x and if b satisfies Assumption 2 The function $\Gamma_b(x', x, \cdot)$ is convex for all x, x'. [Figalli, Kim, McCann '11], [Carlier, D. '15]

Remarks

- If (u, q) is feasible, then u is b-convex and $q = \nabla u$ a.e.
- For b(x, y) = x ⋅ y, Γ_b(x', x, q) = (x' − x) ⋅ q and the convexity constraint (IC") is as in [Ekeland, Moreno-Bromberg '10].

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

A tractable class of b

We consider perturbations of the scalar product

 $b(x,y) = x \cdot y + f(x)g(y)$ on $X \times \mathbb{R}^d$

with f, g convex and C^1 , $g \ge 0$, $\inf_{x,y} \nabla f(x) \cdot \nabla g(y) > -1$;

- $\Gamma_b(x', x, q) = (x' x) \cdot q + D_f(x', x)g(y_b(x, q))$ where
- $D_f \ge 0$ is the Bregman divergence associated to f,
- $g(y_b(x,q))$ is the solution to the scalar equation

$$\lambda = g(q - \lambda \nabla f(x))$$

and can be shown to be convex w.r.t. q.

A tractable class of b

We consider perturbations of the scalar product

 $b(x,y) = x \cdot y + f(x)g(y)$ on $X \times \mathbb{R}^d$

with f, g convex and C^1 , $g \ge 0$, $\inf_{x,y} \nabla f(x) \cdot \nabla g(y) > -1$;

- $\Gamma_b(x', x, q) = (x' x) \cdot q + D_f(x', x)g(y_b(x, q))$ where
- $D_f \ge 0$ is the Bregman divergence associated to f,
- $g(y_b(x,q))$ is the solution to the scalar equation

$$\lambda = g(q - \lambda \nabla f(x))$$

and can be shown to be convex w.r.t. q.

Numerical implementation (to come)

•
$$f(x) = \sqrt{1+|x|^2}, g(y) = \sqrt{1+|y|^2}$$

• closed form for $g(y_b(x,q))$

Outline

Motivation and assumptions

Projection problems over *b*-convex functions

Dykstra's algorithm and numerical results

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > の < @ >

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Quadratic integrands

We consider a projection problem over *b*-convex functions, that we discretize for any $\{x_k\}_{1 \le k \le N} \subset X$ as follows:

$$\min_{((u_k)_k,(q_k)_k)} \sum_{k=1}^{N} \left[\frac{\alpha_k}{2} |q_k - \bar{q}_k|^2 + \frac{\beta_k}{2} |u_k - \bar{u}_k|^2 \right]$$

subject to $u_i - u_j \ge \Gamma_b(x_i, x_j, q_j) \quad \forall (i, j)$ (IC")

Quadratic integrands

We consider a projection problem over *b*-convex functions, that we discretize for any $\{x_k\}_{1 \le k \le N} \subset X$ as follows:

$$\min_{((u_k)_k, (q_k)_k)} \sum_{k=1}^{N} \left[\frac{\alpha_k}{2} |q_k - \bar{q}_k|^2 + \frac{\beta_k}{2} |u_k - \bar{u}_k|^2 \right]$$

subject to $u_i - u_j \ge \Gamma_b(x_i, x_j, q_j) \quad \forall (i, j)$ (IC")

Solving these convex optimization problems, we get interior and convergent approximations of the continuous solution by setting

$$u^{N}(x) := \max_{1 \le k \le N} \{ u_{k} + \Gamma_{b}(x, x_{k}, q_{k}) \}, \quad q^{N}(x) := \nabla u^{N}(x).$$

[Ekeland, Moreno-Bromberg '10] (convex case), [Carlier, D. '15]

Formulation as a projection problem

Introducing the convex sets, for all (i, j), in $\mathbb{R}^N \times \mathbb{R}^{dN}$

 $C_{i,j}:=\{(u,q):\ u_i-u_j\geq \Gamma_b(x_i,x_j,q_j)\},\$

the discrete problem can be seen as a projection problem

- onto their intersection $C := \bigcap_{(i,j)} C_{i,j}$
- for the weighted Euclidean distance $D_{\alpha,\beta}$

where is to be found $P_C(\bar{u}, \bar{q})$, solution in $\mathbb{R}^N \times \mathbb{R}^{dN}$ to

 $\min_{(u,q)\in C} D_{\alpha,\beta}((u,q),(\bar{u},\bar{q})).$

Formulation as a projection problem

Introducing the convex sets, for all (i, j), in $\mathbb{R}^N \times \mathbb{R}^{dN}$

 $C_{i,j}:=\{(u,q):\ u_i-u_j\geq \Gamma_b(x_i,x_j,q_j)\},\$

the discrete problem can be seen as a projection problem

- onto their intersection $C := \bigcap_{(i,j)} C_{i,j}$
- ► for the weighted Euclidean distance $D_{\alpha,\beta}$ where is to be found $P_C(\bar{u}, \bar{q})$, solution in $\mathbb{R}^N \times \mathbb{R}^{dN}$ to

 $\min_{(u,q)\in C} D_{\alpha,\beta}((u,q),(\bar{u},\bar{q})).$

We solve it iteratively by Dykstra's algorithm [Boyle, Dykstra '86]: at each step we compute an elementary projection $P_{C_{i,j}}$ and then cycle over the N^2 convex sets; the sequence that we get converges.

Outline

Motivation and assumptions

Projection problems over *b*-convex functions

Dykstra's algorithm and numerical results

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Elemantary projections

Any elementary projection $P_{C_{i,j}}(\hat{u}, \hat{q},)$ coincides with (\hat{q}, \hat{u}) up to (u_i, u_j, q_j) , solution to

$$\min_{\substack{(u_i, u_j, q_j)}} \frac{\alpha_j}{2} |q_j - \hat{q}_j|^2 + \frac{\beta_i}{2} |u_i - \hat{u}_i|^2 + \frac{\beta_j}{2} |u_j - \hat{u}_j|^2$$

subject to $u_i - u_j \ge \Gamma_b(x_i, x_j, q_j)$

- optimization problem in $\mathbb{R}^2 \times \mathbb{R}^d$ (instead of $\mathbb{R}^N \times \mathbb{R}^{dN}$)
- single scalar inequality constraint (instead of N^2)

We solve this problem by determining a primal-dual solution to

- ► the necessary and sufficient (KKT) optimality conditions
- ▶ by a Newton method when the constraint is active.

The projections are explicit in the convex case $b(x, y) = x \cdot y$.

$$\min_{(u,q)} \int_X \left[\frac{1}{2} |q(x) - \nabla \overline{u}(x)|^2 + \frac{1}{2} |u(x) - \overline{u}(x)|^2 \right] \mathrm{d}x$$

subject to (IC")

$$\min_{(u,q)} \int_X \left[\frac{1}{2} |q(x) - \nabla \overline{u}(x)|^2 + \frac{1}{2} |u(x) - \overline{u}(x)|^2 \right] \mathrm{d}x$$

subject to (IC")

$$\min_{(u,q)} \int_X \left[\frac{1}{2} |q(x) - \nabla \overline{u}(x)|^2 + \frac{1}{2} |u(x) - \overline{u}(x)|^2 \right] \mathrm{d}x$$

subject to (IC'')

$$\min_{(u,q)} \int_X \left[\frac{1}{2} |q(x) - \nabla \overline{u}(x)|^2 + \frac{1}{2} |u(x) - \overline{u}(x)|^2 \right] \mathrm{d}x$$

subject to (IC")

$$\min_{(u,q)} \int_X \left[\frac{1}{2} |q(x) - \nabla \overline{u}(x)|^2 + \frac{1}{2} |u(x) - \overline{u}(x)|^2 \right] \mathrm{d}x$$

subject to (IC")

$$\min_{(u,q)} \int_X \left[\frac{1}{2} |q(x) - \nabla \overline{u}(x)|^2 + \frac{1}{2} |u(x) - \overline{u}(x)|^2 \right] \mathrm{d}x$$

subject to (IC")

$$\min_{(u,q)} \int_X \left[\frac{\varepsilon}{2} |q(x)|^2 + \frac{1}{2} |u(x) - \bar{u}(x)|^2 \right] dx$$

subject to (IC"), $u(x) \le \bar{u}(x) \ \forall x$

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ 今 ○ ○

$$\min_{(u,q)} \int_X \left[\frac{\varepsilon}{2} |q(x)|^2 + \frac{1}{2} |u(x) - \bar{u}(x)|^2 \right] dx$$

subject to (IC"), $u(x) \le \bar{u}(x) \ \forall x$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ◆ □ > ◆ □ >

$$\min_{(u,q)} \int_X \left[\frac{\varepsilon}{2} |q(x)|^2 + \frac{1}{2} |u(x) - \bar{u}(x)|^2 \right] dx$$

subject to (IC"), $u(x) \le \bar{u}(x) \ \forall x$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ◆ □ > ◆ □ >

$$\min_{(u,q)} \int_X \left[\frac{\varepsilon}{2} |q(x)|^2 + \frac{1}{2} |u(x) - \bar{u}(x)|^2 \right] dx$$

subject to (IC"), $u(x) \le \bar{u}(x) \ \forall x$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 - の�?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Principal-agent problem

In the convex case $b(x, y) = x \cdot y$ and $c(y) = \frac{1}{2}|y|^2$,

$$\int_X \left[\frac{1}{2}|q(x)|^2 - x \cdot q(x) + u(x)\right] \mathrm{d}\mu(x)$$

can be regularized to fit into the projections framework as

$$\int_{X} \left[\frac{1}{2} |q(x) - x|^2 + \frac{\varepsilon}{2} |u(x) + \frac{1}{\varepsilon}|^2 \right] \mathrm{d}\mu(x)$$

Principal-agent problem

In the convex case $b(x, y) = x \cdot y$ and $c(y) = \frac{1}{2}|y|^2$,

$$\int_X \left[\frac{1}{2}|q(x)|^2 - x \cdot q(x) + u(x)\right] \mathrm{d}\mu(x)$$

can be regularized to fit into the projections framework as

$$\int_X \left[\frac{1}{2}|q(x)-x|^2 + \frac{\varepsilon}{2}|u(x) + \frac{1}{\varepsilon}|^2\right] \mathrm{d}\mu(x).$$

For more general $b(x, y) = x \cdot y + f(x)g(y)$, when the objective

$$\int_{\mathcal{X}} \left[\frac{1}{2} |y_b(x, q(x))|^2 - b(x, y_b(x, q(x)) + \frac{\varepsilon}{2} |u(x) + \frac{1}{\varepsilon}|^2 \right] \mathrm{d}\mu(x)$$

is a Bregman distance (in particular strictly convex) in (q, u), an extension of Dykstra's algorithm is available [Baushcke, Lewis '98].

Principal-agent problem

Indirect utility of the agents in the convex case (μ uniform distribution)

▲ロ > ▲ 圖 > ▲ 圖 > ▲ 圖 > → 圖 → の Q @

Principal-agent problem

Distribution of the types of products sold in the convex case (μ uniform distribution)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで