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An example

The following problem arises in economics [Rochet, Choné ‘98]:

min
u convex

u≥0

∫

[

c
(

∇u(x)
)

− x · ∇u(x) + u(x)
]

dµ(x)

Convexity constraint

◮ arises in various contexts (e.g. Newton’s least resistance)

◮ no tractable Euler-Lagrange equation

◮ challenging for numerical methods:
[Carlier et al. ’01], . . . , [Ekeland, Moreno-Bromberg ‘10],
[Oberman ‘13], [Mérigot, Oudet ‘14], [Mirebeau ‘15]
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A generalization

Definition (b-convexity)

A function u is b-convex if for some function v and for all x

u(x) = sup
y∈Y

{b(x , y) − v(y)}

This notion is crucial in optimal transport [Gangbo, McCann ‘96].
For b(x , y) = x · y , we recover the notion of convexity.
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Figure: Convex vs b-convex envelope
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A generalization

Definition (b-convexity)

A function u is b-convex if for some function v and for all x

u(x) = sup
y∈Y

{b(x , y) − v(y)}

This notion is crucial in optimal transport [Gangbo, McCann ‘96].
For b(x , y) = x · y , we recover the notion of convexity.

b-convexity constraints

◮ arise in economics [Carlier ‘01]

◮ the convexity of {u b-convex} requires assumptions on b

[Figalli, Kim, McCann ‘11]

◮ no numerical method so far
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The principal-agent problem

A principal (e.g. monopolist) faces

◮ a population of agents: agents of type x ∈X are present
according to a distribution dµ(x);

◮ a range of products: products of type y ∈Y have value b(x , y)
for agents of type x and cost c(y) for the principal.

She is looking for

◮ a contract menu (y , p) : X → Y ×R ∪ {+∞}

which specifies that

◮ agents x buy the product y(x) at the price p(x)

and which maximizes her profit

∫

X

[

p(x)− c(y(x))
]

dµ(x).
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Incentive compatibility constraint

The utility (to be maximized) of agents of type x is

◮ b(x , y)− p for buying the product y at the price p, or

◮ zero for not buying anything (outside option).
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Incentive compatibility constraint

The utility (to be maximized) of agents of type x is

◮ b(x , y)− p for buying the product y at the price p, or

◮ zero for not buying anything (outside option).

Adverse selection
Agents actually behave according to a contract menu (y , p)
if it is incentive compatible and provide non-negative utility:

b(x , y(x)) − p(x) ≥ b(x , y(x ′))− p(x ′) ∀(x , x ′), (IC)

b(x , y(x)) − p(x) ≥ 0 ∀x . (IR)

The principal’s problem is then the following optimization problem:

min
(y ,p)

∫

X

[

c(y(x)) − p(x)
]

dµ(x) subject to (IC)-(IR).



Motivation and assumptions Projection problems Dykstra’s algorithm

Change of variables

Given (y , p), we define u by u(x) := b(x , y(x)) − p(x) for all x .
The incentive compatibility constraint (IC) becomes

u(x ′)− u(x) ≥ b(x ′, y(x)) − b(x , y(x)) ∀(x , x ′) (IC’)

If (y , u) satifies (IC’), then

◮ u(x) = supy{b(x , y)− v(y)} for v(y(x)) := p(x),

◮ u is b-convex, ∇u(x) = ∂b
∂x
(x , y(x)) if u is differentiable at x .
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Change of variables

Given (y , p), we define u by u(x) := b(x , y(x)) − p(x) for all x .
The incentive compatibility constraint (IC) becomes

u(x ′)− u(x) ≥ b(x ′, y(x)) − b(x , y(x)) ∀(x , x ′) (IC’)

If (y , u) satifies (IC’), then

◮ u(x) = supy{b(x , y)− v(y)} for v(y(x)) := p(x),

◮ u is b-convex, ∇u(x) = ∂b
∂x
(x , y(x)) if u is differentiable at x .

Assumption 1 The b-exponential map yb is well defined by

y = yb(x , q) ⇔ q = ∂b
∂x
(x , y).

Given (y , u), we define q by q(x) := ∂b
∂x
(x , y(x)) for all x ,

we replace y(x) by yb(x , q(x)) in (IC’) and we introduce

Γb(x
′, x , q) := b(x ′, yb(x , q)) − b(x , yb(x , q)).
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The convexity issue

We therefore consider, more generaly, the following problem:

min
(u,q)

∫

X

L(x , u(x), q(x))dx subject to

u(x ′)− u(x) ≥ Γb(x
′, x , q(x)) ∀(x , x ′) (IC”)

It is convex if L(x , ·, ·) is convex for all x and if b satisfies

Assumption 2 The function Γb(x
′, x , ·) is convex for all x , x ′.

[Figalli, Kim, McCann ‘11], [Carlier, D. ‘15]
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The convexity issue

We therefore consider, more generaly, the following problem:

min
(u,q)

∫

X

L(x , u(x), q(x))dx subject to

u(x ′)− u(x) ≥ Γb(x
′, x , q(x)) ∀(x , x ′) (IC”)

It is convex if L(x , ·, ·) is convex for all x and if b satisfies

Assumption 2 The function Γb(x
′, x , ·) is convex for all x , x ′.

[Figalli, Kim, McCann ‘11], [Carlier, D. ‘15]

Remarks

◮ If (u, q) is feasible, then u is b-convex and q = ∇u a.e.

◮ For b(x , y) = x · y , Γb(x
′, x , q) = (x ′− x) ·q and the convexity

constraint (IC”) is as in [Ekeland, Moreno-Bromberg ‘10].
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A tractable class of b

We consider perturbations of the scalar product

b(x , y) = x · y + f (x)g(y) on X × R
d

with f , g convex and C 1, g ≥ 0, infx ,y ∇f (x) · ∇g(y) > −1;

◮ Γb(x
′, x , q) = (x ′ − x) · q + Df (x

′, x)g(yb(x , q)) where

◮ Df ≥ 0 is the Bregman divergence associated to f ,

◮ g(yb(x , q)) is the solution to the scalar equation

λ = g(q − λ∇f (x))

and can be shown to be convex w.r.t. q.
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A tractable class of b

We consider perturbations of the scalar product

b(x , y) = x · y + f (x)g(y) on X × R
d

with f , g convex and C 1, g ≥ 0, infx ,y ∇f (x) · ∇g(y) > −1;

◮ Γb(x
′, x , q) = (x ′ − x) · q + Df (x

′, x)g(yb(x , q)) where

◮ Df ≥ 0 is the Bregman divergence associated to f ,

◮ g(yb(x , q)) is the solution to the scalar equation

λ = g(q − λ∇f (x))

and can be shown to be convex w.r.t. q.

Numerical implementation (to come)

◮ f (x) =
√

1 + |x |2, g(y) =
√

1 + |y |2

◮ closed form for g(yb(x , q))
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Quadratic integrands

We consider a projection problem over b-convex functions, that we
discretize for any {xk}1≤k≤N ⊂ X as follows:

min
((uk )k ,(qk )k )

N
∑

k=1

[

αk

2
|qk − q̄k |

2 +
βk

2
|uk − ūk |

2

]

subject to ui − uj ≥ Γb(xi , xj , qj) ∀(i , j) (IC”)
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Quadratic integrands

We consider a projection problem over b-convex functions, that we
discretize for any {xk}1≤k≤N ⊂ X as follows:

min
((uk )k ,(qk )k )

N
∑

k=1

[

αk

2
|qk − q̄k |

2 +
βk

2
|uk − ūk |

2

]

subject to ui − uj ≥ Γb(xi , xj , qj) ∀(i , j) (IC”)

Solving these convex optimization problems, we get interior and
convergent approximations of the continuous solution by setting

uN(x) := max
1≤k≤N

{uk + Γb(x , xk , qk)}, qN(x) := ∇uN(x).

[Ekeland, Moreno-Bromberg ‘10] (convex case), [Carlier, D. ‘15]
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Formulation as a projection problem

Introducing the convex sets, for all (i , j), in R
N × R

dN

Ci ,j :=
{

(u, q) : ui − uj ≥ Γb(xi , xj , qj )
}

,

the discrete problem can be seen as a projection problem

◮ onto their intersection C :=
⋂

(i ,j) Ci ,j

◮ for the weighted Euclidean distance Dα,β

where is to be found PC (ū, q̄), solution in R
N × R

dN to

min
(u,q)∈C

Dα,β

(

(u, q), (ū, q̄)
)

.
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Formulation as a projection problem

Introducing the convex sets, for all (i , j), in R
N × R

dN

Ci ,j :=
{

(u, q) : ui − uj ≥ Γb(xi , xj , qj )
}

,

the discrete problem can be seen as a projection problem

◮ onto their intersection C :=
⋂

(i ,j) Ci ,j

◮ for the weighted Euclidean distance Dα,β

where is to be found PC (ū, q̄), solution in R
N × R

dN to

min
(u,q)∈C

Dα,β

(

(u, q), (ū, q̄)
)

.

We solve it iteratively by Dykstra’s algorithm [Boyle, Dykstra ‘86]:
at each step we compute an elementary projection PCi,j

and then
cycle over the N2 convex sets; the sequence that we get converges.
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Elemantary projections

Any elementary projection PCi,j
(û, q̂, ) coincides with (q̂, û) up to

(ui , uj , qj), solution to

min
(ui ,uj ,qj )

αj

2
|qj − q̂j |

2 +
βi

2
|ui − ûi |

2 +
βj

2
|uj − ûj |

2

subject to ui − uj ≥ Γb(xi , xj , qj )

◮ optimization problem in R
2 × R

d (instead of RN × R
dN)

◮ single scalar inequality constraint (instead of N2)

We solve this problem by determining a primal-dual solution to

◮ the necessary and sufficient (KKT) optimality conditions

◮ by a Newton method when the constraint is active.

The projections are explicit in the convex case b(x , y) = x · y .
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H
1 projection on b-convex functions

min
(u,q)

∫

X

[

1

2
|q(x)−∇ū(x)|2 +

1

2
|u(x)− ū(x)|2

]

dx

subject to (IC”)
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H
1 projection on b-convex functions

min
(u,q)

∫

X

[

1

2
|q(x)−∇ū(x)|2 +

1

2
|u(x)− ū(x)|2

]

dx

subject to (IC”)
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H
1 projection on b-convex functions

min
(u,q)

∫

X

[

1

2
|q(x)−∇ū(x)|2 +

1

2
|u(x)− ū(x)|2

]

dx
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H
1 projection on b-convex functions

min
(u,q)

∫

X

[

1

2
|q(x)−∇ū(x)|2 +

1

2
|u(x)− ū(x)|2

]

dx

subject to (IC”)
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H
1 projection on b-convex functions

min
(u,q)

∫
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|q(x)−∇ū(x)|2 +

1

2
|u(x)− ū(x)|2
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H
1 projection on b-convex functions

min
(u,q)

∫
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Approximated b-convex envelope

min
(u,q)

∫

X

[

ε

2
|q(x)|2 +

1

2
|u(x)− ū(x)|2

]

dx

subject to (IC”), u(x) ≤ ū(x) ∀x
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Approximated b-convex envelope

min
(u,q)

∫

X

[

ε

2
|q(x)|2 +

1

2
|u(x)− ū(x)|2

]

dx

subject to (IC”), u(x) ≤ ū(x) ∀x
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Approximated b-convex envelope
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Approximated b-convex envelope

min
(u,q)

∫

X

[

ε

2
|q(x)|2 +

1

2
|u(x)− ū(x)|2

]

dx

subject to (IC”), u(x) ≤ ū(x) ∀x
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Principal-agent problem

In the convex case b(x , y) = x · y and c(y) = 1
2 |y |

2,

∫

X

[

1

2
|q(x)|2 − x · q(x) + u(x)

]

dµ(x)

can be regularized to fit into the projections framework as
∫

X

[

1

2
|q(x)− x |2 +

ε

2
|u(x) +

1

ε
|2
]

dµ(x).
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Principal-agent problem

In the convex case b(x , y) = x · y and c(y) = 1
2 |y |

2,

∫

X

[

1

2
|q(x)|2 − x · q(x) + u(x)

]

dµ(x)

can be regularized to fit into the projections framework as
∫

X

[

1

2
|q(x)− x |2 +

ε

2
|u(x) +

1

ε
|2
]

dµ(x).

For more general b(x , y) = x · y + f (x)g(y), when the objective
∫

X

[

1

2
|yb(x , q(x))|

2 − b(x , yb(x , q(x)) +
ε

2
|u(x) +

1

ε
|2
]

dµ(x)

is a Bregman distance (in particular strictly convex) in (q, u), an
extension of Dykstra’s algorithm is available [Baushcke, Lewis ‘98].
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Principal-agent problem

Indirect utility of the agents in the convex case
(µ uniform distribution)
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Principal-agent problem

Distribution of the types of products sold in the convex case
(µ uniform distribution)
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