Projections alternées pour des contraintes de convexité généralisées

Xavier Dupuis

LUISS University - Rome
Journées SMAI-MODE 2016
Toulouse, 23-25 mars
travail en collaboration avec Guillaume Carlier (Paris-Dauphine)

Outline

Motivation and assumptions

Projection problems over b-convex functions

Dykstra's algorithm and numerical results

Outline

Motivation and assumptions

Projection problems over b-convex functions

Dykstra's algorithm and numerical results

An example

The following problem arises in economics [Rochet, Choné '98]:

$$
\min _{\substack{u \text { convex } \\ u \geq 0}} \int[c(\nabla u(x))-x \cdot \nabla u(x)+u(x)] \mathrm{d} \mu(x)
$$

Convexity constraint

- arises in various contexts (e.g. Newton's least resistance)
- no tractable Euler-Lagrange equation
- challenging for numerical methods:
[Carlier et al. '01], ... , [Ekeland, Moreno-Bromberg '10], [Oberman '13], [Mérigot, Oudet '14], [Mirebeau '15]

A generalization

Definition (b-convexity)
A function u is b-convex if for some function v and for all x

$$
u(x)=\sup _{y \in Y}\{b(x, y)-v(y)\}
$$

This notion is crucial in optimal transport [Gangbo, McCann '96]. For $b(x, y)=x \cdot y$, we recover the notion of convexity.

Figure: Convex vs b-convex envelope

A generalization

Definition (b-convexity)
A function u is b-convex if for some function v and for all x

$$
u(x)=\sup _{y \in Y}\{b(x, y)-v(y)\}
$$

This notion is crucial in optimal transport [Gangbo, McCann '96]. For $b(x, y)=x \cdot y$, we recover the notion of convexity.

Figure: Convex vs b-convex envelope

A generalization

Definition (b-convexity)

A function u is b-convex if for some function v and for all x

$$
u(x)=\sup _{y \in Y}\{b(x, y)-v(y)\}
$$

This notion is crucial in optimal transport [Gangbo, McCann '96]. For $b(x, y)=x \cdot y$, we recover the notion of convexity.
b-convexity constraints

- arise in economics [Carlier '01]
- the convexity of $\{u b$-convex $\}$ requires assumptions on b [Figalli, Kim, McCann '11]
- no numerical method so far

The principal-agent problem

A principal (e.g. monopolist) faces

- a population of agents: agents of type $x \in X$ are present according to a distribution $\mathrm{d} \mu(x)$;
- a range of products: products of type $y \in Y$ have value $b(x, y)$ for agents of type x and cost $c(y)$ for the principal.
She is looking for
- a contract menu $(y, p): X \rightarrow Y \times \mathbb{R} \cup\{+\infty\}$
which specifies that
- agents x buy the product $y(x)$ at the price $p(x)$
and which maximizes her profit $\int_{X}[p(x)-c(y(x))] \mathrm{d} \mu(x)$.

Incentive compatibility constraint

The utility (to be maximized) of agents of type x is

- $b(x, y)-p$ for buying the product y at the price p, or
- zero for not buying anything (outside option).

Incentive compatibility constraint

The utility (to be maximized) of agents of type x is

- $b(x, y)-p$ for buying the product y at the price p, or
- zero for not buying anything (outside option).

Adverse selection

Agents actually behave according to a contract menu (y, p) if it is incentive compatible and provide non-negative utility:

$$
\begin{array}{ll}
b(x, y(x))-p(x) \geq b\left(x, y\left(x^{\prime}\right)\right)-p\left(x^{\prime}\right) & \forall\left(x, x^{\prime}\right), \\
b(x, y(x))-p(x) \geq 0 & \forall x . \tag{IR}
\end{array}
$$

The principal's problem is then the following optimization problem:

$$
\min _{(y, p)} \int_{X}[c(y(x))-p(x)] \mathrm{d} \mu(x) \quad \text { subject to (IC)-(IR). }
$$

Change of variables

Given (y, p), we define u by $u(x):=b(x, y(x))-p(x)$ for all x. The incentive compatibility constraint (IC) becomes

$$
\begin{equation*}
u\left(x^{\prime}\right)-u(x) \geq b\left(x^{\prime}, y(x)\right)-b(x, y(x)) \quad \forall\left(x, x^{\prime}\right) \tag{IC'}
\end{equation*}
$$

If (y, u) satifies (IC'), then

- $u(x)=\sup _{y}\{b(x, y)-v(y)\}$ for $v(y(x)):=p(x)$,
- u is b-convex, $\nabla u(x)=\frac{\partial b}{\partial x}(x, y(x))$ if u is differentiable at x.

Change of variables

Given (y, p), we define u by $u(x):=b(x, y(x))-p(x)$ for all x. The incentive compatibility constraint (IC) becomes

$$
u\left(x^{\prime}\right)-u(x) \geq b\left(x^{\prime}, y(x)\right)-b(x, y(x)) \quad \forall\left(x, x^{\prime}\right)
$$

If (y, u) satifies (IC'), then

- $u(x)=\sup _{y}\{b(x, y)-v(y)\}$ for $v(y(x)):=p(x)$,
- u is b-convex, $\nabla u(x)=\frac{\partial b}{\partial x}(x, y(x))$ if u is differentiable at x.

Assumption 1 The b-exponential map y_{b} is well defined by

$$
y=y_{b}(x, q) \Leftrightarrow q=\frac{\partial b}{\partial x}(x, y)
$$

Given (y, u), we define q by $q(x):=\frac{\partial b}{\partial x}(x, y(x))$ for all x, we replace $y(x)$ by $y_{b}(x, q(x)$) in (IC') and we introduce

$$
\Gamma_{b}\left(x^{\prime}, x, q\right):=b\left(x^{\prime}, y_{b}(x, q)\right)-b\left(x, y_{b}(x, q)\right)
$$

The convexity issue

We therefore consider, more generaly, the following problem:

$$
\begin{align*}
& \min _{(u, q)} \int_{X} L(x, u(x), q(x)) \mathrm{d} x \quad \text { subject to } \\
& u\left(x^{\prime}\right)-u(x) \geq \Gamma_{b}\left(x^{\prime}, x, q(x)\right) \quad \forall\left(x, x^{\prime}\right) \tag{IC"}
\end{align*}
$$

It is convex if $L(x, \cdot, \cdot)$ is convex for all x and if b satisfies
Assumption 2 The function $\Gamma_{b}\left(x^{\prime}, x, \cdot\right)$ is convex for all x, x^{\prime}.
[Figalli, Kim, McCann '11], [Carlier, D. '15]

The convexity issue

We therefore consider, more generaly, the following problem:

$$
\begin{align*}
& \min _{(u, q)} \int_{X} L(x, u(x), q(x)) \mathrm{d} x \quad \text { subject to } \\
& u\left(x^{\prime}\right)-u(x) \geq \Gamma_{b}\left(x^{\prime}, x, q(x)\right) \quad \forall\left(x, x^{\prime}\right) \tag{IC"}
\end{align*}
$$

It is convex if $L(x, \cdot, \cdot)$ is convex for all x and if b satisfies
Assumption 2 The function $\Gamma_{b}\left(x^{\prime}, x, \cdot\right)$ is convex for all x, x^{\prime}.
[Figalli, Kim, McCann '11], [Carlier, D. '15]
Remarks

- If (u, q) is feasible, then u is b-convex and $q=\nabla u$ a.e.
- For $b(x, y)=x \cdot y, \Gamma_{b}\left(x^{\prime}, x, q\right)=\left(x^{\prime}-x\right) \cdot q$ and the convexity constraint (IC') is as in [Ekeland, Moreno-Bromberg '10].

A tractable class of b

We consider perturbations of the scalar product

$$
b(x, y)=x \cdot y+f(x) g(y) \quad \text { on } X \times \mathbb{R}^{d}
$$

with f, g convex and $C^{1}, g \geq 0, \inf _{x, y} \nabla f(x) \cdot \nabla g(y)>-1$;

- $\Gamma_{b}\left(x^{\prime}, x, q\right)=\left(x^{\prime}-x\right) \cdot q+D_{f}\left(x^{\prime}, x\right) g\left(y_{b}(x, q)\right)$ where
- $D_{f} \geq 0$ is the Bregman divergence associated to f,
- $g\left(y_{b}(x, q)\right)$ is the solution to the scalar equation

$$
\lambda=g(q-\lambda \nabla f(x))
$$

and can be shown to be convex w.r.t. q.

A tractable class of b

We consider perturbations of the scalar product

$$
b(x, y)=x \cdot y+f(x) g(y) \quad \text { on } X \times \mathbb{R}^{d}
$$

with f, g convex and $C^{1}, g \geq 0, \inf _{x, y} \nabla f(x) \cdot \nabla g(y)>-1$;

- $\Gamma_{b}\left(x^{\prime}, x, q\right)=\left(x^{\prime}-x\right) \cdot q+D_{f}\left(x^{\prime}, x\right) g\left(y_{b}(x, q)\right)$ where
- $D_{f} \geq 0$ is the Bregman divergence associated to f,
- $g\left(y_{b}(x, q)\right)$ is the solution to the scalar equation

$$
\lambda=g(q-\lambda \nabla f(x))
$$

and can be shown to be convex w.r.t. q.
Numerical implementation (to come)

- $f(x)=\sqrt{1+|x|^{2}}, g(y)=\sqrt{1+|y|^{2}}$
- closed form for $g\left(y_{b}(x, q)\right)$

Outline

Motivation and assumptions

Projection problems over b-convex functions

Dykstra's algorithm and numerical results

Quadratic integrands

We consider a projection problem over b-convex functions, that we discretize for any $\left\{x_{k}\right\}_{1 \leq k \leq N} \subset X$ as follows:

$$
\begin{aligned}
& \min _{\left(\left(u_{k}\right)_{k},\left(q_{k}\right)_{k}\right)} \sum_{k=1}^{N}\left[\frac{\alpha_{k}}{2}\left|q_{k}-\bar{q}_{k}\right|^{2}+\frac{\beta_{k}}{2}\left|u_{k}-\bar{u}_{k}\right|^{2}\right] \\
& \text { subject to } \quad u_{i}-u_{j} \geq \Gamma_{b}\left(x_{i}, x_{j}, q_{j}\right) \quad \forall(i, j)
\end{aligned}
$$

Quadratic integrands

We consider a projection problem over b-convex functions, that we discretize for any $\left\{x_{k}\right\}_{1 \leq k \leq N} \subset X$ as follows:

$$
\begin{align*}
& \min _{\left(\left(u_{k}\right)_{k},\left(q_{k}\right)_{k}\right)} \sum_{k=1}^{N}\left[\frac{\alpha_{k}}{2}\left|q_{k}-\bar{q}_{k}\right|^{2}+\frac{\beta_{k}}{2}\left|u_{k}-\bar{u}_{k}\right|^{2}\right] \\
& \text { subject to } \quad u_{i}-u_{j} \geq \Gamma_{b}\left(x_{i}, x_{j}, q_{j}\right) \quad \forall(i, j) \tag{IC"}
\end{align*}
$$

Solving these convex optimization problems, we get interior and convergent approximations of the continuous solution by setting

$$
u^{N}(x):=\max _{1 \leq k \leq N}\left\{u_{k}+\Gamma_{b}\left(x, x_{k}, q_{k}\right)\right\}, \quad q^{N}(x):=\nabla u^{N}(x)
$$

[Ekeland, Moreno-Bromberg '10] (convex case), [Carlier, D. '15]

Formulation as a projection problem

Introducing the convex sets, for all (i, j), in $\mathbb{R}^{N} \times \mathbb{R}^{d N}$

$$
C_{i, j}:=\left\{(u, q): u_{i}-u_{j} \geq \Gamma_{b}\left(x_{i}, x_{j}, q_{j}\right)\right\}
$$

the discrete problem can be seen as a projection problem

- onto their intersection $C:=\bigcap_{(i, j)} C_{i, j}$
- for the weighted Euclidean distance $D_{\alpha, \beta}$
where is to be found $P_{C}(\bar{u}, \bar{q})$, solution in $\mathbb{R}^{N} \times \mathbb{R}^{d N}$ to

$$
\min _{(u, q) \in C} D_{\alpha, \beta}((u, q),(\bar{u}, \bar{q})) .
$$

Formulation as a projection problem

Introducing the convex sets, for all (i, j), in $\mathbb{R}^{N} \times \mathbb{R}^{d N}$

$$
C_{i, j}:=\left\{(u, q): u_{i}-u_{j} \geq \Gamma_{b}\left(x_{i}, x_{j}, q_{j}\right)\right\},
$$

the discrete problem can be seen as a projection problem

- onto their intersection $C:=\bigcap_{(i, j)} C_{i, j}$
- for the weighted Euclidean distance $D_{\alpha, \beta}$ where is to be found $P_{C}(\bar{u}, \bar{q})$, solution in $\mathbb{R}^{N} \times \mathbb{R}^{d N}$ to

$$
\min _{(u, q) \in C} D_{\alpha, \beta}((u, q),(\bar{u}, \bar{q})) .
$$

We solve it iteratively by Dykstra's algorithm [Boyle, Dykstra '86]: at each step we compute an elementary projection $P_{C_{i, j}}$ and then cycle over the N^{2} convex sets; the sequence that we get converges.

Outline

Motivation and assumptions

Projection problems over b-convex functions

Dykstra's algorithm and numerical results

Elemantary projections

Any elementary projection $P_{C_{i, j}}(\hat{u}, \hat{q}$,$) coincides with (\hat{q}, \hat{u})$ up to $\left(u_{i}, u_{j}, q_{j}\right)$, solution to

$$
\begin{aligned}
\min _{\left(u_{i}, u_{j}, q_{j}\right)} & \frac{\alpha_{j}}{2}\left|q_{j}-\hat{q}_{j}\right|^{2}+\frac{\beta_{i}}{2}\left|u_{i}-\hat{u}_{i}\right|^{2}+\frac{\beta_{j}}{2}\left|u_{j}-\hat{u}_{j}\right|^{2} \\
& \text { subject to } \quad u_{i}-u_{j} \geq \Gamma_{b}\left(x_{i}, x_{j}, q_{j}\right)
\end{aligned}
$$

- optimization problem in $\mathbb{R}^{2} \times \mathbb{R}^{d}$ (instead of $\mathbb{R}^{N} \times \mathbb{R}^{d N}$)
- single scalar inequality constraint (instead of N^{2})

We solve this problem by determining a primal-dual solution to

- the necessary and sufficient (KKT) optimality conditions
- by a Newton method when the constraint is active.

The projections are explicit in the convex case $b(x, y)=x \cdot y$.

H^{1} projection on b-convex functions

$$
\begin{gathered}
\min _{(u, q)} \int_{X}\left[\frac{1}{2}|q(x)-\nabla \bar{u}(x)|^{2}+\frac{1}{2}|u(x)-\bar{u}(x)|^{2}\right] \mathrm{d} x \\
\text { subject to }\left(\mathrm{IC}^{\prime \prime}\right)
\end{gathered}
$$

H^{1} projection on b-convex functions

$$
\begin{gathered}
\min _{(u, q)} \int_{X}\left[\frac{1}{2}|q(x)-\nabla \bar{u}(x)|^{2}+\frac{1}{2}|u(x)-\bar{u}(x)|^{2}\right] \mathrm{d} x \\
\text { subject to (IC') }
\end{gathered}
$$

H^{1} projection on b-convex functions

$$
\begin{gathered}
\min _{(u, q)} \int_{X}\left[\frac{1}{2}|q(x)-\nabla \bar{u}(x)|^{2}+\frac{1}{2}|u(x)-\bar{u}(x)|^{2}\right] \mathrm{d} x \\
\text { subject to }\left(I C^{\prime \prime}\right)
\end{gathered}
$$

H^{1} projection on b-convex functions

$$
\begin{gathered}
\min _{(u, q)} \int_{X}\left[\frac{1}{2}|q(x)-\nabla \bar{u}(x)|^{2}+\frac{1}{2}|u(x)-\bar{u}(x)|^{2}\right] \mathrm{d} x \\
\text { subject to }\left(I C^{\prime \prime}\right)
\end{gathered}
$$

H^{1} projection on b-convex functions

$$
\begin{gathered}
\min _{(u, q)} \int_{X}\left[\frac{1}{2}|q(x)-\nabla \bar{u}(x)|^{2}+\frac{1}{2}|u(x)-\bar{u}(x)|^{2}\right] \mathrm{d} x \\
\text { subject to }\left(I C^{\prime \prime}\right)
\end{gathered}
$$

H^{1} projection on b-convex functions

$$
\begin{gathered}
\min _{(u, q)} \int_{X}\left[\frac{1}{2}|q(x)-\nabla \bar{u}(x)|^{2}+\frac{1}{2}|u(x)-\bar{u}(x)|^{2}\right] \mathrm{d} x \\
\text { subject to }\left(I C^{\prime \prime}\right)
\end{gathered}
$$

Approximated b-convex envelope

$$
\begin{aligned}
& \min _{(u, q)} \int_{x}\left[\frac{\varepsilon}{2}|q(x)|^{2}+\frac{1}{2}|u(x)-\bar{u}(x)|^{2}\right] \mathrm{d} x \\
& \quad \text { subject to }\left(I C^{\prime \prime}\right), u(x) \leq \bar{u}(x) \forall x
\end{aligned}
$$

Approximated b-convex envelope

$$
\begin{gathered}
\min _{(u, q)} \int_{x}\left[\frac{\varepsilon}{2}|q(x)|^{2}+\frac{1}{2}|u(x)-\bar{u}(x)|^{2}\right] \mathrm{d} x \\
\quad \text { subject to }\left(I C^{\prime \prime}\right), u(x) \leq \bar{u}(x) \forall x
\end{gathered}
$$

Approximated b-convex envelope

$$
\begin{aligned}
& \min _{(u, q)} \int_{x}\left[\frac{\varepsilon}{2}|q(x)|^{2}+\frac{1}{2}|u(x)-\bar{u}(x)|^{2}\right] \mathrm{d} x \\
& \quad \text { subject to }\left(I C^{\prime \prime}\right), u(x) \leq \bar{u}(x) \forall x
\end{aligned}
$$

Approximated b-convex envelope

$$
\begin{aligned}
& \min _{(u, q)} \int_{x}\left[\frac{\varepsilon}{2}|q(x)|^{2}+\frac{1}{2}|u(x)-\bar{u}(x)|^{2}\right] \mathrm{d} x \\
& \quad \text { subject to }\left(I C^{\prime \prime}\right), u(x) \leq \bar{u}(x) \forall x
\end{aligned}
$$

Principal-agent problem

In the convex case $b(x, y)=x \cdot y$ and $c(y)=\frac{1}{2}|y|^{2}$,

$$
\int_{X}\left[\frac{1}{2}|q(x)|^{2}-x \cdot q(x)+u(x)\right] \mathrm{d} \mu(x)
$$

can be regularized to fit into the projections framework as

$$
\int_{x}\left[\frac{1}{2}|q(x)-x|^{2}+\frac{\varepsilon}{2}\left|u(x)+\frac{1}{\varepsilon}\right|^{2}\right] d \mu(x)
$$

Principal-agent problem

In the convex case $b(x, y)=x \cdot y$ and $c(y)=\frac{1}{2}|y|^{2}$,

$$
\int_{X}\left[\frac{1}{2}|q(x)|^{2}-x \cdot q(x)+u(x)\right] \mathrm{d} \mu(x)
$$

can be regularized to fit into the projections framework as

$$
\int_{X}\left[\frac{1}{2}|q(x)-x|^{2}+\frac{\varepsilon}{2}\left|u(x)+\frac{1}{\varepsilon}\right|^{2}\right] \mathrm{d} \mu(x)
$$

For more general $b(x, y)=x \cdot y+f(x) g(y)$, when the objective

$$
\int_{X}\left[\frac{1}{2}\left|y_{b}(x, q(x))\right|^{2}-b\left(x, y_{b}(x, q(x))+\frac{\varepsilon}{2}\left|u(x)+\frac{1}{\varepsilon}\right|^{2}\right] \mathrm{d} \mu(x)\right.
$$

is a Bregman distance (in particular strictly convex) in (q, u), an extension of Dykstra's algorithm is available [Baushcke, Lewis '98].

Principal-agent problem

Indirect utility of the agents in the convex case (μ uniform distribution)

Principal-agent problem

Distribution of the types of products sold in the convex case (μ uniform distribution)

