Exact algorithms for linear matrix inequalities

Mohab Safey El Din (UPMC/CNRS/IUF/INRIA PolSys Team)

Joint work with Didier Henrion, CNRS LAAS (Toulouse) Simone Naldi, Technische Universität Dortmund

SMAI-MODE, 2016

Spectrahedra and LMI

 A_0, A_1, \ldots, A_n are $m \times m$ real symmetric matrices

Spectrahedron: $\mathscr{S} = \{x \in \mathbb{R}^n : A(x) = A_0 + x_1A_1 + \dots + x_nA_n \succeq 0\}$

It is basic semi-algebraic since, if

$$\det(A(x) + tI_m) = f_m(x) + f_{m-1}(x)t + \dots + f_1(x)t^{m-1} + t^m$$

then $\mathscr{S} = \{x \in \mathbb{R}^n : f_i(x) \ge 0, i = 1, ..., m\}$. $A(x) \succeq 0$ is called an LMI.

Spectrahedra and LMI

 A_0, A_1, \ldots, A_n are $m \times m$ real symmetric matrices

Spectrahedron: $\mathscr{S} = \{x \in \mathbb{R}^n : A(x) = A_0 + x_1A_1 + \dots + x_nA_n \succeq 0\}$

It is basic semi-algebraic since, if

$$\det(A(x) + tI_m) = f_m(x) + f_{m-1}(x)t + \dots + f_1(x)t^{m-1} + t^m$$

then $\mathscr{S} = \{x \in \mathbb{R}^n : f_i(x) \ge 0, i = 1, ..., m\}$. $A(x) \succeq 0$ is called an LMI.

SDP : linear optimization over \mathscr{S} (i.e. over LMI)

$$\mathscr{S} = \left\{ (x_1, x_2, x_3) \in \mathbb{R}^3 : \left(\begin{array}{ccc} 1 & x_1 & x_2 \\ x_1 & 1 & x_3 \\ x_2 & x_3 & 1 \end{array} \right) \succeq 0 \right\}$$

Figure: The Cayley spectrahedron

Why exact algorithms?

1. It is Hard to compute low-rank solutions to SDP

Figure: "Low-rank" points : they minimize a cone of linear forms

Figure: SEDUMI returns a floating point approximation of (0, 0) when maximizing x_2

2. The interior of \mathscr{S} can be empty \longrightarrow Interior point algorithms could fail

$$\begin{bmatrix} 0 & x_1 & \frac{1}{2}(1-x_4) \\ x_1 & x_2 & x_3 \\ \frac{1}{2}(1-x_4) & x_3 & x_4 \end{bmatrix} \succeq 0$$

Why exact algorithms?

1. It is Hard to compute low-rank solutions to SDP

2. The interior of \mathscr{S} can be empty \longrightarrow Interior point algorithms could fail

Main motivations for the design of exact algorithms:

- 1. Can we manage algebraic constraints such as rank defects?
- 2. Can we handle degenerate non-full-dimensional examples?
- 3. Consequence:

The output is a point whose coordinates may be real algebraic numbers

$$(q, q_0, q_1, \ldots, q_n) \subset \mathbb{Q}[t] \quad
ightarrow \left\{ \left(\frac{q_1(t)}{q_0(t)}, \ldots, \frac{q_n(t)}{q_0(t)} \right) : q(t) = 0 \right\}$$

State of the art

Decision/Sampling problem for real algebraic or semi-algebraic sets

Cylindrical Algebraic Decomposition

Tarski (1948), Seidenberg, Cohen, ... Collins (1975) in $\mathcal{O}((2m)^{2^{2n+8}}m^{2^{n+6}}), \dots$

Critical Points Methodlocal extrema of algebraic maps f on \mathscr{S} Grigoriev, Vorobjov (1988) first singly exp: $m^{\mathcal{O}(n^2)}$ Renegar (1992), Heintz Roy Solernó (1989,1993), Basu Pollack Roy (1996,...)linear exponent $m^{\mathcal{O}(n)}$

Polar varieties

local extrema of linear projections π on $\mathscr S$

Bank, Giusti, Heintz, Mbakop, Pardo (1997,...) Safey El Din, Schost (2003,2004) regular in $\mathcal{O}(m^{3n})$, singular in $\mathcal{O}(m^{4n})$

> The goal was: Better results for spectrahedra? How to take advantage of the structure?

Complexity of SDP

Special case of SDP

Khachiyan, Porkolab (1996) decide LMI-feasibility in time

 $\mathcal{O}(nm^4) + m^{\mathcal{O}(\min\{n,m^2\})}$

on (

 $(\ell m^{\mathcal{O}(\min\{n,m^2\})})$ -bit numbers $(\ell = \text{input bit-size})$

Complexity of SDP

Special case of SDP

Khachiyan, Porkolab (1996) decide LMI-feasibility in time

 $\mathcal{O}(nm^4) + m^{\mathcal{O}(\min\{n,m^2\})}$

on (

 $(\ell m^{\mathcal{O}(\min\{n,m^2\})})$ -bit numbers $(\ell = \text{input bit-size})$

✓ Positive aspects:

- 1. No assumptions, Deterministic
- 2. Binary complexity

Complexity of SDP

Special case of SDP

Khachiyan, Porkolab (1996) decide LMI-feasibility in time

 $\mathcal{O}(nm^4) + m^{\mathcal{O}(\min\{n,m^2\})}$

on

 $(\ell m^{\mathcal{O}(\min\{n,m^2\})})$ -bit numbers $(\ell = \text{input bit-size})$

✓ Positive aspects:

- 1. No assumptions, Deterministic
- 2. Binary complexity

X Main drawbacks:

- 1. It relies on Quantifier Elimination
- 2. Too large constant in the exponent

Define:

For any A(x) (not nec. symmetric): $\mathcal{D}_r = \{x \in \mathbb{C}^n : \operatorname{rank} A(x) \le r\}$ For A(x) symmetric, and $\mathscr{S} \neq \emptyset$: $r(A) = \min\{\operatorname{rank} A(x) \mid x \in \mathscr{S}\}$ So one has nested sequences

$$\mathcal{D}_0 \subset \cdots \subset \mathcal{D}_{m-1}$$

 $\mathcal{D}_0 \cap \mathbb{R}^n \subset \cdots \subset \mathcal{D}_{m-1} \cap \mathbb{R}^n$

Define:

For any A(x) (not nec. symmetric): $\mathcal{D}_r = \{x \in \mathbb{C}^n : \operatorname{rank} A(x) \le r\}$ For A(x) symmetric, and $\mathscr{S} \neq \emptyset$: $r(A) = \min\{\operatorname{rank} A(x) \mid x \in \mathscr{S}\}$ So one has nested sequences

$$\mathcal{D}_0 \subset \cdots \subset \mathcal{D}_{m-1}$$
$$\mathcal{D}_0 \cap \mathbb{R}^n \subset \cdots \subset \mathcal{D}_{m-1} \cap \mathbb{R}^n$$

Smallest Rank Property

Henrion-N.-Safey El Din 2015

Define:

For any A(x) (not nec. symmetric): $\mathcal{D}_r = \{x \in \mathbb{C}^n : \operatorname{rank} A(x) \le r\}$ For A(x) symmetric, and $\mathscr{S} \neq \emptyset$: $r(A) = \min\{\operatorname{rank} A(x) \mid x \in \mathscr{S}\}$ So one has nested sequences

$$\mathcal{D}_0 \subset \cdots \subset \mathcal{D}_{m-1} \\ \mathcal{D}_0 \cap \mathbb{R}^n \subset \cdots \subset \mathcal{D}_{m-1} \cap \mathbb{R}^n$$

Smallest Rank Property

Henrion-N.-Safey El Din 2015

Define:

For any A(x) (not nec. symmetric): $\mathcal{D}_r = \{x \in \mathbb{C}^n : \operatorname{rank} A(x) \le r\}$ For A(x) symmetric, and $\mathscr{S} \neq \emptyset$: $r(A) = \min\{\operatorname{rank} A(x) \mid x \in \mathscr{S}\}$ So one has nested sequences

$$\mathcal{D}_0 \subset \cdots \subset \mathcal{D}_{m-1} \\ \mathcal{D}_0 \cap \mathbb{R}^n \subset \cdots \subset \mathcal{D}_{m-1} \cap \mathbb{R}^n$$

Smallest Rank Property

Henrion-N.-Safey El Din 2015

Smallest Rank Property

Henrion-N.-Safey El Din 2015

Problem statement

Emptiness of spectrahedra

Given A(x) symmetric, with entries in \mathbb{Q} , compute a finite set meeting $\mathscr{S} = \{x \in \mathbb{R}^n : A(x) \succeq 0\}$, or establish that \mathscr{S} is empty.

In other words: Decide the feasibility of an LMI $A(x) \succeq 0$. Particular instance of: Decide the emptiness of semi-algebraic sets.

Problem statement

Emptiness of spectrahedra

Given A(x) symmetric, with entries in \mathbb{Q} , compute a finite set meeting $\mathscr{S} = \{x \in \mathbb{R}^n : A(x) \succeq 0\}$, or establish that \mathscr{S} is empty.

In other words: Decide the feasibility of an LMI $A(x) \succeq 0$. Particular instance of: Decide the emptiness of semi-algebraic sets.

Sample points on S

+

Smallest Rank Property

=

Sample points on $\mathcal{D}_{r(A)} \cap \mathbb{R}^n$

Problem statement

Emptiness of spectrahedra

Given A(x) symmetric, with entries in \mathbb{Q} , compute a finite set meeting $\mathscr{S} = \{x \in \mathbb{R}^n : A(x) \succeq 0\}$, or establish that \mathscr{S} is empty.

In other words: Decide the feasibility of an LMI $A(x) \succeq 0$. Particular instance of: Decide the emptiness of semi-algebraic sets.

 $\begin{array}{c|c} \text{Sample points} \\ \text{on } \mathscr{S} \end{array} + \begin{array}{c} \begin{array}{c} \text{Smallest Rank} \\ \text{Property} \end{array} = \begin{array}{c} \text{Sample points} \\ \text{on } \mathcal{D}_{r(A)} \cap \mathbb{R}^n \end{array}$

Real root finding on determinantal varieties

Given any A(x) with entries in \mathbb{Q} , compute a finite set meeting each connected component of $\mathcal{D}_r \cap \mathbb{R}^n = \{x \in \mathbb{R}^n : \operatorname{rank} A(x) \le r\}.$

Particular instance of: Sampling real algebraic sets.

1. The **Smallest Rank Property** $(\exists C \subset D_{r(A)} : C \subset \mathscr{S})$ allows to reduce:

Sampling/Optimization over One semi – algebraic set Sampling/Optimization over Many algebraic sets

This is somehow typical in PO. Ex. Polar Varieties for PO: Safey El Din, Greuet

1. The **Smallest Rank Property** $(\exists C \subset D_{r(A)} : C \subset \mathscr{S})$ allows to reduce:

Sampling/Optimization over One semi – algebraic set Sampling/Optimization over Many algebraic sets

This is somehow typical in PO. Ex. Polar Varieties for PO: Safey El Din, Greuet

But in our case the **structure is preserved**!

1. The **Smallest Rank Property** $(\exists C \subset D_{r(A)} : C \subset \mathscr{S})$ allows to reduce:

Sampling/Optimization over One semi – algebraic set Sampling/Optimization over Many algebraic sets

This is somehow typical in PO. Ex. Polar Varieties for PO: Safey El Din, Greuet

But in our case the **structure is preserved**!

- 2. For r = 1, ..., m 1 compute sample points in $\mathcal{D}_r \cap \mathbb{R}^n$
- 3. Output the minimum rank on ${\mathscr S}$ with a sample point.

1. The **Smallest Rank Property** $(\exists C \subset D_{r(A)} : C \subset \mathscr{S})$ allows to reduce:

Sampling/Optimization over One semi – algebraic set Sampling/Optimization over Many algebraic sets

This is somehow *typical* in PO. Ex. Polar Varieties for PO: Safey El Din, Greuet

But in our case the structure is preserved!

- 2. For r = 1, ..., m 1 compute sample points in $\mathcal{D}_r \cap \mathbb{R}^n$
- 3. Output the minimum rank on \mathscr{S} with a sample point.

Sampling determinantal varieties

- Either the empty list iff $\mathcal{D}_r \cap \mathbb{R}^n = \emptyset$
- ► Or $(q, q_1, ..., q_n) \subset \mathbb{Q}[t]$ s.t. $\forall C \subset D_r \cap \mathbb{R}^n \exists t : x(t) \in C$

1. The **Smallest Rank Property** $(\exists C \subset D_{r(A)} : C \subset \mathscr{S})$ allows to reduce:

Sampling/Optimization over One semi – algebraic set Sampling/Optimization over Many algebraic sets

This is somehow *typical* in PO. Ex. Polar Varieties for PO: Safey El Din, Greuet

But in our case the structure is preserved!

- 2. For r = 1, ..., m 1 compute sample points in $\mathcal{D}_r \cap \mathbb{R}^n$
- 3. Output the minimum rank on \mathscr{S} with a sample point.

Sampling determinantal varieties

- Either the empty list iff $\mathcal{D}_r \cap \mathbb{R}^n = \emptyset$
- ► Or $(q, q_1, ..., q_n) \subset \mathbb{Q}[t]$ s.t. $\forall C \subset D_r \cap \mathbb{R}^n \exists t : x(t) \in C$

Emptiness of spectrahedra

- Either the empty list iff $\mathscr{S} = \emptyset$
- Or $(q, q_1, \ldots, q_n) \subset \mathbb{Q}[t]$ s.t.

 $\exists t: x(t) \in \mathscr{S}$

Incidence varieties and critical points

1st step Lifting of the determinantal variety:

$$A(x) Y(y) = A(x) \begin{bmatrix} y_{1,1} & \dots & y_{1,m-r} \\ \vdots & \vdots \\ y_{m,1} & \dots & y_{m,m-r} \end{bmatrix} = 0.$$

$$U Y(y) = I_{m-r}$$

 (x_2, y)

If A is generic, the lifted algebraic set V_r is **smooth** and **equidimensional**

<u>**2nd step**</u> *Compute critical points* of the map $\pi(x, y) = a_1x_1 + \cdots + a_nx_n$ on \mathcal{V}_r :

When $a_1 \dots a_n$ are generic, there are **finitely many** critical points.

<u>**3rd step**</u> Intersect with any fiber of π and call point 2

Incidence varieties and critical points

If A is generic, the lifted algebraic set V_r is **smooth** and **equidimensional**

<u>**2nd step**</u> *Compute critical points* of the map $\pi(x, y) = a_1 x_1 + \cdots + a_n x_n$ on \mathcal{V}_r :

When $a_1 \, ..\, a_n$ are generic, there are **finitely many** critical points.

<u>**3rd step**</u> Intersect with any fiber of π and call point 2

Computing critical points on incidence varieties

$$(A(X)Y = \mathbf{0}, UY = I_{m-r})$$

$$F_1(X, Y) = \dots = F_{m(m-r)}(Y) = \dots = F_{m(m-r)+(m-r)^2} = \mathbf{0}$$

$$(\text{Lagrange System } L.jac(\mathbf{F}, [\mathbf{X}, \mathbf{Y}]) = [\mathbf{a} \ \mathbf{0}])$$

Computing critical points on incidence varieties

Multi-Linear System

- $\blacktriangleright \ \mathbf{F}(\mathbf{X},\mathbf{Y})=0, \mathbf{G}(\mathbf{X},\mathbf{L})=0, \mathbf{H}(\mathbf{Y},\mathbf{L})=0$
- All equations have multi-degree (1, 1, 0) or (1, 0, 1) or (0, 1, 1)
- Impact on multi-linear/sparsity structure on the number of solutions

 $F_1(X)$

Multi-linear Bézout bounds

> Symbolic Newton iteration (Hensel lifting)

Jeronimo/Matera/Solerno/Waissbein

Complexity bounds

Complexity for Sampling determinantal varieties

$$\mathcal{O}^{\sim}\left((n+m^2-r^2)^7 \left({n+m(m-r) \atop n}
ight)^6
ight)$$

Complexity for Emptiness of spectrahedra

$$\mathcal{O}^{\sim}\left(n\sum_{r\leq r(A)} \binom{m}{r} (n+p_r+r(m-r))^7 \binom{p_r+n}{n}^6\right)$$
$$\mathcal{O}^{\sim}(k) = \mathcal{O}(k\log^c k) \exists c \in \mathbb{N} \qquad \text{with } p_r = (m-r)(m+r+1)/2.$$

Remarkable aspects:

Explicit constants in the exponent When m is fixed, polynomial in nStrictly depends on r(A)

SPECTRA: a library for real algebraic geometry and optimization

What is SPECTRA?

A MAPLE library, freely distributed

Depends on Faugère's FGB for computations with Gröbner bases

Addressed to researchers in Optimization, Convex alg. geom., Symb. comp.

(<i>m</i> , <i>r</i> , <i>n</i>)	RAGLIB	SPECTRA	deg
(3, 2, 8)	109	18	39
(3, 2, 9)	230	20	39
(4, 2, 5)	12.2	26	100
(4, 2, 6)	∞	593	276
(4, 2, 7)	∞	6684	532
(4, 2, 8)	∞	42868	818
(4, 2, 9)	∞	120801	1074
(4, 3, 10)	∞	303	284
(4, 3, 11)	∞	377	284
(5, 2, 9)	∞	903	175
(6, 5, 4)	∞	8643	726

- RAGLIB = Real algebraic geometry library
- SPECTRA = new algorithms
- deg = degree of Rational Parametrization
- Time in seconds
- ∞ = more than 2 days

Download a beta version:

homepages.laas.fr/snaldi/software.html

Scheiderer's spectrahedron

$$f = u_1^4 + u_1 u_2^3 + u_2^4 - 3u_1^2 u_2 u_3 - 4u_1 u_2^2 u_3 + 2u_1^2 u_3^2 + u_1 u_3^3 + u_2 u_3^3 + u_3^4$$

One can write
$$f = v' A(x) v$$
 with $v = [u_1^2, u_1 u_2, u_2^2, u_1 u_3, u_2 u_3, u_3^2]$

$$A(x) = \begin{bmatrix} 1 & 0 & x_1 & 0 & -3/2 - x_2 & x_3 \\ 0 & -2x_1 & 1/2 & x_2 & -2 - x_4 & -x_5 \\ x_1 & 1/2 & 1 & x_4 & 0 & x_6 \\ 0 & x_2 & x_4 & -2x_3 + 2 & x_5 & 1/2 \\ -3/2 - x_2 & -2 - x_4 & 0 & x_5 & -2x_6 & 1/2 \\ x_3 & -x_5 & x_6 & 1/2 & 1/2 & 1 \end{bmatrix}$$

What information can be extracted?

- ▶ No matrices of rank 1 s.t. $A(x) \succeq 0 \longrightarrow f \neq g^2$
- ► Two matrices of rank 2 s.t. $A(x) \succeq 0 \longrightarrow f = g_1^2 + g_2^2 = g_3^2 + g_4^2$
- ▶ No matrices of rank 3 s.t. $A(x) \succeq 0 \longrightarrow f \neq h_1^2 + h_2^2 + h_3^2$

Perspectives

- 1. Remove genericity assumptions on the input linear matrix A
- 2. Use of numerical homotopy for studying incidence varieties
- 3. Theoretical toolbox for analyzing singularities of determinantal varieties Surprising applications in optimal control techniques for the contrast imaging problem in medical imagery

joint work with B. Bonnard, J.-C. Faugère, A. Jacquemard, T. Verron.