Exact algorithms for linear matrix inequalities

Mohab Safey El Din
(UPMC/CNRS/IUF/INRIA PolSys Team)

Joint work with
Didier Henrion, CNRS LAAS (Toulouse)
Simone Naldi, Technische Universität Dortmund

SMAI-MODE, 2016

Spectrahedra and LMI

$A_{0}, A_{1}, \ldots, A_{n}$ are $m \times m$ real symmetric matrices

Spectrahedron: $\mathscr{S}=\left\{x \in \mathbb{R}^{n}: A(x)=A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0\right\}$

It is basic semi-algebraic since, if

$$
\operatorname{det}\left(A(x)+t l_{m}\right)=f_{m}(x)+f_{m-1}(x) t+\cdots+f_{1}(x) t^{m-1}+t^{m}
$$

then $\mathscr{S}=\left\{x \in \mathbb{R}^{n}: f_{i}(x) \geq 0, i=1, \ldots, m\right\} . A(x) \succeq 0$ is called an LMI.

Spectrahedra and LMI

$A_{0}, A_{1}, \ldots, A_{n}$ are $m \times m$ real symmetric matrices

Spectrahedron: $\mathscr{S}=\left\{x \in \mathbb{R}^{n}: A(x)=A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0\right\}$

It is basic semi-algebraic since, if

$$
\operatorname{det}\left(A(x)+t l_{m}\right)=f_{m}(x)+f_{m-1}(x) t+\cdots+f_{1}(x) t^{m-1}+t^{m}
$$

then $\mathscr{S}=\left\{x \in \mathbb{R}^{n}: f_{i}(x) \geq 0, i=1, \ldots, m\right\} . A(x) \succeq 0$ is called an LMI.

SDP : linear optimization over \mathscr{S} (i.e. over LMI)
$\mathscr{S}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}:\left(\begin{array}{ccc}1 & x_{1} & x_{2} \\ x_{1} & 1 & x_{3} \\ x_{2} & x_{3} & 1\end{array}\right) \succeq 0\right\}$

Figure: The Cayley spectrahedron

Why exact algorithms?

1. It is Hard to compute low-rank solutions to SDP

Figure: "Low-rank" points : they minimize a cone of linear forms

Figure: SEDUMI returns a floating point approximation of $(0,0)$ when maximizing x_{2}
2. The interior of \mathscr{S} can be empty \longrightarrow Interior point algorithms could fail

$$
\left[\begin{array}{ccc}
0 & x_{1} & \frac{1}{2}\left(1-x_{4}\right) \\
x_{1} & x_{2} & x_{3} \\
\frac{1}{2}\left(1-x_{4}\right) & x_{3} & x_{4}
\end{array}\right] \succeq 0
$$

Why exact algorithms?

1. It is Hard to compute low-rank solutions to SDP
2. The interior of \mathscr{S} can be empty \longrightarrow Interior point algorithms could fail

$$
\left[\begin{array}{ccc}
0 & x_{1} & \frac{1}{2}\left(1-x_{4}\right) \\
x_{1} & x_{2} & x_{3} \\
\frac{1}{2}\left(1-x_{4}\right) & x_{3} & x_{4}
\end{array}\right] \succeq 0
$$

Main motivations for the design of exact algorithms:

1. Can we manage algebraic constraints such as rank defects?
2. Can we handle degenerate non-full-dimensional examples?
3. Consequence:

The output is a point whose coordinates may be real algebraic numbers

$$
\left(q, q_{0}, q_{1}, \ldots, q_{n}\right) \subset \mathbb{Q}[t] \rightarrow\left\{\left(\frac{q_{1}(t)}{q_{0}(t)}, \ldots, \frac{q_{n}(t)}{q_{0}(t)}\right): q(t)=0\right\}
$$

State of the art

Decision/Sampling problem for real algebraic or semi-algebraic sets

Cylindrical Algebraic Decomposition

Tarski (1948), Seidenberg, Cohen, ...
Collins (1975) in $\mathcal{O}\left((2 m)^{2^{2 n+8}} m^{2^{n+6}}\right), \ldots$

Critical Points Method
 local extrema of algebraic maps f on \mathscr{S}

Grigoriev, Vorobjov (1988) first singly exp: $m^{\mathcal{O}\left(n^{2}\right)}$
Renegar (1992), Heintz Roy Solernó (1989,1993), Basu Pollack Roy (1996,...) linear exponent $m^{\mathcal{O}(n)}$

Polar varieties local extrema of linear projections π on \mathscr{S}

Bank, Giusti, Heintz, Mbakop, Pardo (1997,...)
Safey El Din, Schost $(2003,2004)$ regular in $\mathcal{O}\left(m^{3 n}\right)$, singular in $\mathcal{O}\left(m^{4 n}\right)$
The goal was:
Better results for spectrahedra?
How to take advantage of the structure?

Complexity of SDP

Special case of SDP

Khachiyan, Porkolab (1996) decide LMI-feasibility in time

$$
\begin{array}{r}
\mathcal{O}\left(n m^{4}\right)+m^{\mathcal{O}\left(\min \left\{n, m^{2}\right\}\right)} \quad \text { on } \quad\left(\ell m^{\mathcal{O}\left(\min \left\{n, m^{2}\right\}\right)}\right) \text {-bit numbers } \\
(\ell=\text { input bit-size })
\end{array}
$$

Complexity of SDP

Special case of SDP

Khachiyan, Porkolab (1996) decide LMI-feasibility in time

$$
\begin{array}{r}
\mathcal{O}\left(n m^{4}\right)+m^{\mathcal{O}\left(\min \left\{n, m^{2}\right\}\right)} \quad \text { on } \quad\left(\ell m^{\mathcal{O}\left(\min \left\{n, m^{2}\right\}\right)}\right) \text {-bit numbers } \\
(\ell=\text { input bit-size })
\end{array}
$$

\checkmark Positive aspects:

1. No assumptions, Deterministic
2. Binary complexity

Complexity of SDP

Special case of SDP

Khachiyan, Porkolab (1996) decide LMI-feasibility in time

$$
\mathcal{O}\left(n m^{4}\right)+m^{\mathcal{O}\left(\min \left\{n, m^{2}\right\}\right)}
$$

$$
\text { on } \quad\left(\ell m^{\mathcal{O}\left(\min \left\{n, m^{2}\right\}\right)}\right) \text {-bit numbers }
$$

$$
(\ell=\text { input bit-size })
$$

\checkmark Positive aspects:

1. No assumptions, Deterministic
2. Binary complexity
X Main drawbacks:
3. It relies on Quantifier Elimination
4. Too large constant in the exponent

Low rank positive semidefinite matrices

Define:
For any $A(x)$ (not nec. symmetric): $\mathcal{D}_{r}=\left\{x \in \mathbb{C}^{n}:\right.$ rank $\left.A(x) \leq r\right\}$ For $A(x)$ symmetric, and $\mathscr{S} \neq \emptyset: r(A)=\min \{\operatorname{rank} A(x) \mid x \in \mathscr{S}\}$ So one has nested sequences

$$
\begin{aligned}
& \mathcal{D}_{0} \\
& \mathcal{D}_{0} \cap \mathbb{R}^{n} \subset \cdots \subset \mathcal{D}_{m-1} \\
& \subset \mathcal{D}_{m-1} \cap \mathbb{R}^{n}
\end{aligned}
$$

Low rank positive semidefinite matrices

Define:
For any $A(x)$ (not nec. symmetric): $\mathcal{D}_{r}=\left\{x \in \mathbb{C}^{n}: \operatorname{rank} A(x) \leq r\right\}$
For $A(x)$ symmetric, and $\mathscr{S} \neq \emptyset: r(A)=\min \{\operatorname{rank} A(x) \mid x \in \mathscr{S}\}$
So one has nested sequences

$$
\begin{aligned}
& \mathcal{D}_{0} \\
& \mathcal{D}_{0} \cap \mathbb{R}^{n} \subset \cdots \subset \mathcal{D}_{m-1} \\
& \subset \mathcal{D}_{m-1} \cap \mathbb{R}^{n}
\end{aligned}
$$

Smallest Rank Property

Henrion-N.-Safey El Din 2015
$A(x)$ symmetric, and $\mathscr{S} \neq \emptyset$. Let \mathcal{C} be a conn. comp. of $\mathcal{D}_{r(A)} \cap \mathbb{R}^{n}$ s.t. $\mathcal{C} \cap \mathscr{S} \neq \emptyset . \quad$ Then $\mathcal{C} \subset \mathscr{S} . \quad$ In particular $\mathcal{C} \subset \mathcal{D}_{r(A)} \backslash \mathcal{D}_{r(A)-1}$.

Low rank positive semidefinite matrices

Define:
For any $A(x)$ (not nec. symmetric): $\mathcal{D}_{r}=\left\{x \in \mathbb{C}^{n}:\right.$ rank $\left.A(x) \leq r\right\}$
For $A(x)$ symmetric, and $\mathscr{S} \neq \emptyset: r(A)=\min \{\operatorname{rank} A(x) \mid x \in \mathscr{S}\}$
So one has nested sequences

$$
\begin{aligned}
& \mathcal{D}_{0} \\
& \mathcal{D}_{0} \cap \mathbb{R}^{n} \subset \cdots \subset \mathcal{D}_{m-1} \\
& \subset \mathcal{D}_{m-1} \cap \mathbb{R}^{n}
\end{aligned}
$$

Smallest Rank Property

Henrion-N.-Safey El Din 2015
$A(x)$ symmetric, and $\mathscr{S} \neq \emptyset$. Let \mathcal{C} be a conn. comp. of $\mathcal{D}_{r(A)} \cap \mathbb{R}^{n}$ s.t. $\mathcal{C} \cap \mathscr{S} \neq \emptyset . \quad$ Then $\mathcal{C} \subset \mathscr{S} . \quad$ In particular $\mathcal{C} \subset \mathcal{D}_{r(A)} \backslash \mathcal{D}_{r(A)-1}$.

Either

the set \mathscr{S} is empty

Low rank positive semidefinite matrices

Define:
For any $A(x)$ (not nec. symmetric): $\mathcal{D}_{r}=\left\{x \in \mathbb{C}^{n}:\right.$ rank $\left.A(x) \leq r\right\}$
For $A(x)$ symmetric, and $\mathscr{S} \neq \emptyset: r(A)=\min \{\operatorname{rank} A(x) \mid x \in \mathscr{S}\}$
So one has nested sequences

$$
\begin{aligned}
& \mathcal{D}_{0} \\
& \mathcal{D}_{0} \cap \mathbb{R}^{n} \subset \cdots \subset \mathcal{D}_{m-1} \\
& \subset \mathcal{D}_{m-1} \cap \mathbb{R}^{n}
\end{aligned}
$$

Smallest Rank Property

Henrion-N.-Safey El Din 2015
$A(x)$ symmetric, and $\mathscr{S} \neq \emptyset$. Let \mathcal{C} be a conn. comp. of $\mathcal{D}_{r(A)} \cap \mathbb{R}^{n}$ s.t. $\mathcal{C} \cap \mathscr{S} \neq \emptyset . \quad$ Then $\mathcal{C} \subset \mathscr{S} . \quad$ In particular $\mathcal{C} \subset \mathcal{D}_{r(A)} \backslash \mathcal{D}_{r(A)-1}$.

Either

 the set \mathscr{S} is empty
Or

$r(A)$ is well-defined $\exists \mathcal{C} \subset \mathcal{D}_{r(A)}: \mathcal{C} \subset \mathscr{S}$

Low rank positive semidefinite matrices

$A(x)$ symmetric, and $\mathscr{S} \neq \emptyset$. Let \mathcal{C} be a conn. comp. of $\mathcal{D}_{r(A)} \cap \mathbb{R}^{n}$ s.t. $\mathcal{C} \cap \mathscr{S} \neq \emptyset . \quad$ Then $\mathcal{C} \subset \mathscr{S} . \quad$ In particular $\mathcal{C} \subset \mathcal{D}_{r(A)} \backslash \mathcal{D}_{r(A)-1}$.

Either

the set \mathscr{S} is empty

Problem statement

Emptiness of spectrahedra

Given $A(x)$ symmetric, with entries in \mathbb{Q}, compute a finite set meeting $\mathscr{S}=$ $\left\{x \in \mathbb{R}^{n}: A(x) \succeq 0\right\}$, or establish that \mathscr{S} is empty.

In other words: Decide the feasibility of an LMI $A(x) \succeq 0$. Particular instance of: Decide the emptiness of semi-algebraic sets.

Problem statement

Emptiness of spectrahedra

Given $A(x)$ symmetric, with entries in \mathbb{Q}, compute a finite set meeting $\mathscr{S}=$ $\left\{x \in \mathbb{R}^{n}: A(x) \succeq 0\right\}$, or establish that \mathscr{S} is empty.

In other words: Decide the feasibility of an LMI $A(x) \succeq 0$. Particular instance of: Decide the emptiness of semi-algebraic sets.

Sample points on \mathscr{S}
Smallest Rank Property
on $\mathcal{D}_{\mathbf{r}(\mathbf{A})} \cap \mathbb{R}^{\mathbf{n}}$

Problem statement

Emptiness of spectrahedra

Given $A(x)$ symmetric, with entries in \mathbb{Q}, compute a finite set meeting $\mathscr{S}=$ $\left\{x \in \mathbb{R}^{n}: A(x) \succeq 0\right\}$, or establish that \mathscr{S} is empty.

In other words: Decide the feasibility of an LMI $A(x) \succeq 0$. Particular instance of: Decide the emptiness of semi-algebraic sets.

Sample points
on \mathscr{S}
:---:
Property
:---:
on $\mathcal{D}_{\mathrm{r}(\mathbf{A})} \cap \mathbb{R}^{\mathbf{n}}$

Real root finding on determinantal varieties

Given any $A(x)$ with entries in \mathbb{Q}, compute a finite set meeting each connected component of $\mathcal{D}_{r} \cap \mathbb{R}^{n}=\left\{x \in \mathbb{R}^{n}: \operatorname{rank} A(x) \leq r\right\}$.

Particular instance of: Sampling real algebraic sets.

Strategy

1. The Smallest Rank Property $\left(\exists \mathcal{C} \subset \mathcal{D}_{r(A)}: \mathcal{C} \subset \mathscr{S}\right)$ allows to reduce:

Sampling/Optimization over One semi - algebraic set
 Sampling/Optimization over Many algebraic sets

This is somehow typical in PO.
Ex. Polar Varieties for PO: Safey El Din, Greuet

Strategy

1. The Smallest Rank Property $\left(\exists \mathcal{C} \subset \mathcal{D}_{r(A)}: \mathcal{C} \subset \mathscr{S}\right)$ allows to reduce:

Sampling/Optimization over One semi - algebraic set
 Sampling/Optimization over Many algebraic sets

This is somehow typical in PO. Ex. Polar Varieties for PO: Safey El Din, Greuet
But in our case the structure is preserved!

Strategy

1. The Smallest Rank Property $\left(\exists \mathcal{C} \subset \mathcal{D}_{r(A)}: \mathcal{C} \subset \mathscr{S}\right)$ allows to reduce:

Sampling/Optimization over One semi - algebraic set

Sampling/Optimization over Many algebraic sets

This is somehow typical in PO. Ex. Polar Varieties for PO: Safey El Din, Greuet

> But in our case the structure is preserved!
2. For $r=1, \ldots, m-1$ compute sample points in $\mathcal{D}_{r} \cap \mathbb{R}^{n}$
3. Output the minimum rank on \mathscr{S} with a sample point.

Strategy

1. The Smallest Rank Property $\left(\exists \mathcal{C} \subset \mathcal{D}_{r(A)}: \mathcal{C} \subset \mathscr{S}\right)$ allows to reduce:

Sampling/Optimization over One semi - algebraic set

Sampling/Optimization over Many algebraic sets

This is somehow typical in PO. Ex. Polar Varieties for PO: Safey El Din, Greuet

But in our case the structure is preserved!

2. For $r=1, \ldots, m-1$ compute sample points in $\mathcal{D}_{r} \cap \mathbb{R}^{n}$
3. Output the minimum rank on \mathscr{S} with a sample point.

Sampling determinantal varieties

- Either the empty list iff
$\mathcal{D}_{r} \cap \mathbb{R}^{n}=\emptyset$
- $\operatorname{Or}\left(q, q_{1}, \ldots, q_{n}\right) \subset \mathbb{Q}[t]$ s.t.
$\forall \mathcal{C} \subset \mathcal{D}_{r} \cap \mathbb{R}^{n} \exists t: x(t) \in \mathcal{C}$

Strategy

1. The Smallest Rank Property $\left(\exists \mathcal{C} \subset \mathcal{D}_{r(A)}: \mathcal{C} \subset \mathscr{S}\right)$ allows to reduce:

Sampling/Optimization over One semi - algebraic set

Sampling/Optimization over Many algebraic sets

This is somehow typical in PO. Ex. Polar Varieties for PO: Safey El Din, Greuet

But in our case the structure is preserved!

2. For $r=1, \ldots, m-1$ compute sample points in $\mathcal{D}_{r} \cap \mathbb{R}^{n}$
3. Output the minimum rank on \mathscr{S} with a sample point.

Sampling determinantal varieties

- Either the empty list iff $\mathcal{D}_{r} \cap \mathbb{R}^{n}=\emptyset$
- $\operatorname{Or}\left(q, q_{1}, \ldots, q_{n}\right) \subset \mathbb{Q}[t]$ s.t. $\forall \mathcal{C} \subset \mathcal{D}_{r} \cap \mathbb{R}^{n} \exists t: x(t) \in \mathcal{C}$

Emptiness of spectrahedra

- Either the empty list iff $\mathscr{S}=\emptyset$
- $\operatorname{Or}\left(q, q_{1}, \ldots, q_{n}\right) \subset \mathbb{Q}[t]$ s.t. $\exists t: x(t) \in \mathscr{S}$

Incidence varieties and critical points

1st step Lifting of the determinantal variety:
$\mathrm{A}(x) Y(y)=\mathrm{A}(x)\left[\begin{array}{ccc}y_{1,1} & \cdots & y_{1, m-r} \\ \vdots & & \vdots \\ y_{m, 1} & \cdots & y_{m, m-r}\end{array}\right]=0$.

$$
U Y(y)=I_{m-r}
$$

If A is generic, the lifted algebraic set \mathcal{V}_{r} is smooth and equidimensional

2nd step Compute critical points of the map $\pi(x, y)=a_{1} x_{1}+\cdots+a_{n} x_{n}$ on \mathcal{V}_{r} :
When $a_{1} . . a_{n}$ are generic, there are finitely many critical points.

3rd step Intersect with any fiber of π and call point 2

Incidence varieties and critical points

1st step Lifting of the determinantal variety:
$\mathrm{A}(x) Y(y)=\mathrm{A}(x)\left[\begin{array}{ccc}y_{1,1} & \cdots & y_{1, m-r} \\ \vdots & & \vdots \\ y_{m, 1} & \cdots & y_{m, m-r}\end{array}\right]=0$.

$$
U Y(y)=I_{m-r}
$$

If A is generic, the lifted algebraic set \mathcal{V}_{r} is smooth and equidimensional

2nd step Compute critical points of the map $\pi(x, y)=a_{1} x_{1}+\cdots+a_{n} x_{n}$ on \mathcal{V}_{r} :
When $a_{1} . . a_{n}$ are generic, there are finitely many critical points.

3rd step Intersect with any fiber of π and call point 2

Computing critical points on incidence varieties

Computing critical points on incidence varieties

Complexity bounds

Complexity for Sampling determinantal varieties

$$
\mathcal{O}^{\sim}\left(\left(n+m^{2}-r^{2}\right)^{7}\binom{n+m(m-r)}{n}^{6}\right)
$$

Complexity for Emptiness of spectrahedra

$$
\begin{gathered}
\mathcal{O}^{\sim}\left(n \sum_{r \leq r(A)}\binom{m}{r}\left(n+p_{r}+r(m-r)\right)^{7}\binom{p_{r}+n}{n}^{6}\right) \\
\mathcal{O}^{\sim}(k)=\mathcal{O}\left(k \log ^{c} k\right) \exists c \in \mathbb{N} \quad \text { with } p_{r}=(m-r)(m+r+1) / 2
\end{gathered}
$$

Remarkable aspects:

Explicit constants in the exponent
When m is fixed, polynomial in n
Strictly depends on $r(A)$

SPECTRA: a library for real algebraic geometry and optimization

What is SPECTRA?
A maple library, freely distributed
Depends on Faugère's FGB for computations with Gröbner bases
Addressed to researchers in Optimization, Convex alg. geom., Symb. comp.

(m, r, n)	RAGLIB	SPECTRA	deg
$(3,2,8)$	109	18	39
$(3,2,9)$	230	20	39
$(4,2,5)$	12.2	26	100
$(4,2,6)$	∞	593	276
$(4,2,7)$	∞	6684	532
$(4,2,8)$	∞	42868	818
$(4,2,9)$	∞	120801	1074
$(4,3,10)$	∞	303	284
$(4,3,11)$	∞	377	284
$(5,2,9)$	∞	903	175
$(6,5,4)$	∞	8643	726

- RAGLIB $=$ Real algebraic geometry library
- SPECTRA = new algorithms
- deg = degree of Rational Parametrization
- Time in seconds
- $\infty=$ more than 2 days

Download a beta version: homepages.laas.fr/snaldi/software.html

Scheiderer's spectrahedron

$$
f=u_{1}^{4}+u_{1} u_{2}^{3}+u_{2}^{4}-3 u_{1}^{2} u_{2} u_{3}-4 u_{1} u_{2}^{2} u_{3}+2 u_{1}^{2} u_{3}^{2}+u_{1} u_{3}^{3}+u_{2} u_{3}^{3}+u_{3}^{4}
$$

One can write $f=v^{\prime} A(x) v$ with $v=\left[u_{1}^{2}, u_{1} u_{2}, u_{2}^{2}, u_{1} u_{3}, u_{2} u_{3}, u_{3}^{2}\right]$

$$
A(x)=\left[\begin{array}{cccccc}
1 & 0 & x_{1} & 0 & -3 / 2-x_{2} & x_{3} \\
0 & -2 x_{1} & 1 / 2 & x_{2} & -2-x_{4} & -x_{5} \\
x_{1} & 1 / 2 & 1 & x_{4} & 0 & x_{6} \\
0 & x_{2} & x_{4} & -2 x_{3}+2 & x_{5} & 1 / 2 \\
-3 / 2-x_{2} & -2-x_{4} & 0 & x_{5} & -2 x_{6} & 1 / 2 \\
x_{3} & -x_{5} & x_{6} & 1 / 2 & 1 / 2 & 1
\end{array}\right]
$$

What information can be extracted?

- No matrices of rank 1 s.t. $A(x) \succeq 0 \longrightarrow f \neq g^{2}$
- Two matrices of rank 2 s.t. $A(x) \succeq 0 \longrightarrow f=g_{1}^{2}+g_{2}^{2}=g_{3}^{2}+g_{4}^{2}$
- No matrices of rank 3 s.t. $A(x) \succeq 0 \longrightarrow f \neq h_{1}^{2}+h_{2}^{2}+h_{3}^{2}$

Perspectives

1. Remove genericity assumptions on the input linear matrix A
2. Use of numerical homotopy for studying incidence varieties
3. Theoretical toolbox for analyzing singularities of determinantal varieties

Surprising applications in optimal control techniques for the contrast imaging problem in medical imagery
joint work with B. Bonnard, J.-C. Faugère, A. Jacquemard, T. Verron.

