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Spectrahedra and LMI
A0,A1, . . . ,An are m ×m real symmetric matrices

Spectrahedron: S = {x ∈ Rn : A(x) = A0 + x1A1 + · · ·+ xnAn � 0}

It is basic semi-algebraic since, if

det(A(x) + tIm) = fm(x) + fm−1(x)t + · · ·+ f1(x)tm−1 + tm

then S = {x ∈ Rn : fi(x) ≥ 0, i = 1, . . . ,m}. A(x) � 0 is called an LMI.

Figure: The Cayley spectrahedron

SDP : linear optimization over S (i.e. over LMI)

S =

(x1, x2, x3) ∈ R3 :

 1 x1 x2

x1 1 x3

x2 x3 1

 � 0


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Why exact algorithms?
1. It is Hard to compute low-rank solutions to SDP

Figure: “Low-rank” points : they minimize
a cone of linear forms
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Figure: SEDUMI returns a floating point
approximation of (0, 0) when maximizing x2

2. The interior of S can be empty −→ Interior point algorithms could fail

 0 x1
1
2 (1− x4)

x1 x2 x3
1
2 (1− x4) x3 x4

 � 0
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Main motivations for the design of exact algorithms:

1. Can we manage algebraic constraints such as rank defects?

2. Can we handle degenerate non-full-dimensional examples?

3. Consequence:
The output is a point whose coordinates may be real algebraic numbers

(q, q0, q1, . . . , qn) ⊂ Q[t ] →
{(

q1(t)
q0(t)

, . . . ,
qn(t)
q0(t)

)
: q(t) = 0

}
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State of the art
Decision / Sampling problem for real algebraic or semi-algebraic sets

Cylindrical Algebraic Decomposition

Tarski (1948), Seidenberg, Cohen, . . .
Collins (1975) in O((2m)22n+8

m2n+6
), . . .

Critical Points Method local extrema of algebraic maps f on S

Grigoriev, Vorobjov (1988) first singly exp: mO(n2)

Renegar (1992), Heintz Roy Solernó (1989,1993), Basu Pollack Roy (1996,. . . )
linear exponent mO(n)

Polar varieties local extrema of linear projections π on S

Bank, Giusti, Heintz, Mbakop, Pardo (1997,. . . )
Safey El Din, Schost (2003,2004) regular in O(m3n), singular in O(m4n)

The goal was:
Better results for spectrahedra?

How to take advantage of the structure?
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Complexity of SDP

Special case of SDP

Khachiyan, Porkolab (1996) decide LMI-feasibility in time

O(nm4) + mO(min{n,m2}) on (`mO(min{n,m2}))-bit numbers
(` = input bit-size)

3 Positive aspects:
1. No assumptions, Deterministic

2. Binary complexity

7 Main drawbacks:
1. It relies on Quantifier Elimination

2. Too large constant in the exponent
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Low rank positive semidefinite matrices

Define:
For any A(x) (not nec. symmetric): Dr = {x ∈ Cn : rank A(x) ≤ r}
For A(x) symmetric, and S 6= ∅: r(A) = min{rank A(x) | x ∈ S }

So one has nested sequences

D0 ⊂ · · · ⊂ Dm−1

D0 ∩ Rn ⊂ · · · ⊂ Dm−1 ∩ Rn

Smallest Rank Property Henrion-N.-Safey El Din 2015

A(x) symmetric, and S 6= ∅. Let C be a conn. comp. of Dr(A) ∩ Rn s.t.
C ∩S 6= ∅. Then C ⊂ S . In particular C ⊂ Dr(A) \ Dr(A)−1.

Either
the set S is empty

Or
r(A) is well-defined
∃ C ⊂ Dr(A) : C ⊂ S
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Problem statement

Emptiness of spectrahedra

Given A(x) symmetric, with entries in Q, compute a finite set meeting S =
{x ∈ Rn : A(x) � 0}, or establish that S is empty.

In other words: Decide the feasibility of an LMI A(x) � 0.
Particular instance of: Decide the emptiness of semi-algebraic sets.

Sample points
on S

+ Smallest Rank
Property = Sample points

on Dr(A) ∩ Rn

Real root finding on determinantal varieties

Given any A(x) with entries in Q, compute a finite set meeting each con-
nected component of Dr ∩ Rn = {x ∈ Rn : rank A(x) ≤ r}.

Particular instance of: Sampling real algebraic sets.
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Strategy

1. The Smallest Rank Property (∃ C ⊂ Dr(A) : C ⊂ S ) allows to reduce:

Sampling/Optimization over
One semi− algebraic set −→ Sampling/Optimization over

Many algebraic sets

This is somehow typical in PO. Ex. Polar Varieties for PO: Safey El Din, Greuet

But in our case the structure is preserved!

2. For r = 1, . . . ,m − 1 compute sample points in Dr ∩ Rn

3. Output the minimum rank on S with a sample point.

Sampling determinantal varieties
I Either the empty list iff
Dr ∩ Rn = ∅

I Or (q, q1, . . . , qn) ⊂ Q[t ] s.t.

∀C ⊂ Dr ∩ Rn ∃ t : x(t) ∈ C

Emptiness of spectrahedra
I Either the empty list iff S = ∅
I Or (q, q1, . . . , qn) ⊂ Q[t ] s.t.

∃ t : x(t) ∈ S
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Incidence varieties and critical points

1st step Lifting of the determinantal variety :

A(x)Y (y) = A(x)

 y1,1 . . . y1,m−r
...

...
ym,1 . . . ym,m−r

 = 0.

U Y (y) = Im−r

x1

(x2, y)

C

π1π1

If A is generic, the lifted algebraic set Vr is smooth and equidimensional

2nd step Compute critical points of the map π(x , y) = a1x1 + · · ·+ anxn on Vr :

When a1 .. an are generic, there are finitely many critical points.

3rd step Intersect with any fiber of π and call point 2
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Computing critical points on incidence varieties

A(X )Y = 0, UY = Im−r

F1(X ,Y ) = · · · = Fm(m−r)(Y ) = · · · = Fm(m−r)+(m−r)2 = 0

Lagrange System L.jac(F, [X,Y]) = [a 0]
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Multi-Linear System
I F(X,Y) = 0,G(X,L) = 0,H(Y,L) = 0

I All equations have multi-degree (1, 1, 0)
or (1, 0, 1) or (0, 1, 1)

I Impact on multi-linear/sparsity
structure on the number of solutions

Multi-linear Bézout bounds

I Symbolic-homotopy algorithms
; cubic complexity in these bounds

Symbolic Newton iteration
(Hensel lifting)

Jeronimo/Matera/Solerno/Waissbein



Complexity bounds

Complexity for Sampling determinantal varieties

O˜

(n + m2 − r 2)7

(
n + m(m − r)

n

)6


Complexity for Emptiness of spectrahedra

O˜

n
∑

r≤r(A)

(
m
r

)
(n + pr + r(m − r))7

(
pr + n

n

)6


O (̃k) = O(k logc k) ∃ c ∈ N with pr = (m − r)(m + r + 1)/2.

Remarkable aspects:

Explicit constants in the exponent

When m is fixed, polynomial in n

Strictly depends on r(A)
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SPECTRA: a library for real algebraic geometry
and optimization

What is SPECTRA?

A MAPLE library, freely distributed
Depends on Faugère’s FGB for computations with Gröbner bases
Addressed to researchers in Optimization, Convex alg. geom., Symb. comp.

(m, r , n) RAGLIB SPECTRA deg
(3, 2, 8) 109 18 39
(3, 2, 9) 230 20 39
(4, 2, 5) 12.2 26 100
(4, 2, 6) ∞ 593 276
(4, 2, 7) ∞ 6684 532
(4, 2, 8) ∞ 42868 818
(4, 2, 9) ∞ 120801 1074
(4, 3, 10) ∞ 303 284
(4, 3, 11) ∞ 377 284
(5, 2, 9) ∞ 903 175
(6, 5, 4) ∞ 8643 726

- RAGLIB = Real algebraic geometry
library

- SPECTRA = new algorithms

- deg = degree of Rational Parametrization

- Time in seconds

- ∞ = more than 2 days

Download a beta version: homepages.laas.fr/snaldi/software.html
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Scheiderer’s spectrahedron

f = u4
1 + u1u3

2 + u4
2 − 3u2

1u2u3 − 4u1u2
2u3 + 2u2

1u2
3 + u1u3

3 + u2u3
3 + u4

3

One can write f = v ′A(x)v with v = [u2
1 , u1u2, u2

2 , u1u3, u2u3, u2
3 ]

A(x) =


1 0 x1 0 −3/2− x2 x3
0 −2x1 1/2 x2 −2− x4 −x5
x1 1/2 1 x4 0 x6
0 x2 x4 −2x3 + 2 x5 1/2

−3/2− x2 −2− x4 0 x5 −2x6 1/2
x3 −x5 x6 1/2 1/2 1



What information can be extracted?

I No matrices of rank 1 s.t. A(x) � 0 −→ f 6= g2

I Two matrices of rank 2 s.t. A(x) � 0 −→ f = g2
1 + g2

2 = g2
3 + g2

4

I No matrices of rank 3 s.t. A(x) � 0 −→ f 6= h2
1 + h2

2 + h2
3
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Perspectives

1. Remove genericity assumptions on the input linear matrix A

2. Use of numerical homotopy for studying incidence varieties

3. Theoretical toolbox for analyzing singularities of determinantal varieties

Surprising applications in optimal control techniques for the contrast imaging
problem in medical imagery

joint work with B. Bonnard, J.-C. Faugère, A. Jacquemard, T. Verron.
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