A demographic prisonner's dilemma

Sylvain Gibaud

25 Mars 2016 Journées MODE

Demographic prisoner's dilemma

- The torus
- Particles
- Movement
- Evolution and games
- Spatiality

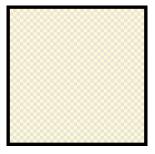
2 Results and proves

- Statements
- Proves

In Further Research

- Birth
- Mean Field
- To the mean field
- Other way of moving

The Torus

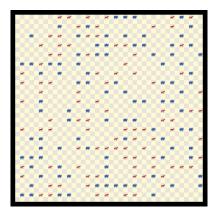


Let $((\mathbb{Z}/m\mathbb{Z})^2)$ be a fixed torus $(m \in \mathbb{N}^*)$

Demographic prisoner's dilemma ○●○○○○○ Results and proves

Further Research

Particles



N particles on the torus.

Demographic prisoner's dilemma

Results and proves

Further Research

Move of the player

Movement

Particles move following continuous independent symmetric simple random walks of rate d > 0.

Evolution

Wealth

Each particle carries a wealth w. If w = 0, the particle dies.

Definition

A configuration σ is an element of $((\mathbb{Z}/m\mathbb{Z})^2) \times \{Red, Blue\} \times \mathbb{N})^N$. A particle system $(\sigma_t)_t$ is a process taking values in the space of configurations.

Game and Effect

The payoff matrices are with T > R > 0 and S > P > 0:

$$\left(\begin{array}{cc} (R,R) & (-S,T) \\ (T,-S) & \frac{1}{2}(-2P,0) + \frac{1}{2}(0,-2P) \end{array}\right)$$

Every player has a unique action :

- the blue players only cooperate,
- the red players only defect.

Interactions

Poisson processes

Couple $(i, j) \leftarrow$ Poisson process independent of everything of parameter v > 0.

Spatial condition

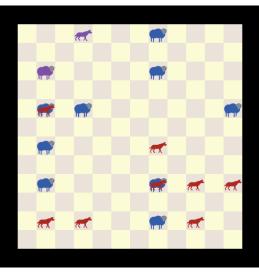
Only particles on the same site can play together.

Demographic prisoner's dilemma

Results and proves

Further Research

Simulation on Netlogo



click here

Results

Payoff Matrix

The payoff matrices are with T > R > 0 and S > P > 0:

$$\begin{pmatrix} (R,R) & (-S,T) \\ (T,-S) & \frac{1}{2}(-2P,0) + \frac{1}{2}(0,-2P) \end{pmatrix}$$

Theorem

There exists a constant $\mu > 0$ depending only on v, d, N and m such that if :

 $\mu R < S$

then for each initial configuration : The cooperators will die almost surely.

Payoff Matrix

The payoff matrices are with T > R > 0 and S > P > 0:

$$\left(egin{array}{ccc} (R,R) & (-S,T) \ (T,-S) & rac{1}{2}(-2P,0)+rac{1}{2}(0,-2P) \end{array}
ight)$$

Theorem

There exists a constant $\nu > 0$ depending only on d, v, N and m such that if :

 $\nu S < R$

then for each initial configuration :

 $\mathbb{P}(\{\text{the cooperators live ad vitam eternam}\}) > 0$

Sketch of the first theorem proof

Context

Only one red particle and blue particles.

Objective

Let W_t^{tot} the sum of the wealth of the blue particles at time t. Showing that :

$$W_t^{tot} \xrightarrow[t \to +\infty]{} 0$$
 a.s.

Usefull notation for the proof

 $\tau(\sigma) = \inf\{n \ge 0, t_n \text{ is the realization of a game Poisson process between a blue player and the red player on the same site }. \tau(\sigma)$ doesn't depend on the wealth of the players.

 $p(\sigma) =$ probability that this game happens in less than 2m + 1 realizations of Poisson processes going from a configuration σ . $p(\sigma)$ doesn't depend on the wealth of the players.

 $p = \min_{\sigma} p(\sigma)$

Usefull notation for the proof

 $\tau(\sigma) = \inf\{n \ge 0, t_n \text{ is the realization of a game Poisson process between a blue player and the red player on the same site }. \tau(\sigma)$ doesn't depend on the wealth of the players.

 $p(\sigma) =$ probability that this game happens in less than 2m + 1 realizations of Poisson processes going from a configuration σ . $p(\sigma)$ doesn't depend on the wealth of the players.

 $p = \min_{\sigma} p(\sigma)$

Usefull notation for the proof

 $\tau(\sigma) = \inf\{n \ge 0, t_n \text{ is the realization of a game Poisson process between a blue player and the red player on the same site }. \tau(\sigma)$ doesn't depend on the wealth of the players.

 $p(\sigma) =$ probability that this game happens in less than 2m + 1 realizations of Poisson processes going from a configuration σ . $p(\sigma)$ doesn't depend on the wealth of the players.

$$p = \min_{\sigma} p(\sigma)$$

Theorem

There exists a constant $\mu_1>0$ depending only on $\lambda_b,\lambda_m,\lambda_g,N$ and m such that if :

 $\mu_1 S < R$

then for each initial configuration :

 $\mathbb{P}(\{\text{the cooperators live ad vitam eternam}\}) > 0$

Idea

The main idea is to consider a ghost system, such that in it, the player don't die but can have negative wealth.

In this system, with the first theorem and with other hypothesis $W_t^{tot} \to +\infty$ a.s. when $t \to +\infty$.

Extension : Birth

Data

- $w_c > 0$: necessary amount of wealth to give birth,
- $w_0 > 0$: initial amount of wealth of the babies.

Poisson process

 $\begin{array}{ll} i \leftarrow \mbox{Poisson process of parameter } b. \\ w > w_c \Rightarrow \mbox{Birth} & \mbox{Wealth of the parent } w \leftarrow w - w_0. \\ \mbox{Initial wealth of child : } w_0. \end{array}$

Mean Field

Mean field assumption

- There is an infinite number of players. ρ (resp β) initial density of red (resp blue) particles
- All the particles have independent laws.
- All the red particle wealths have the same laws (law of a process $(R_t)_t$)
- All the blue particles wealths have the same laws (law of a process $(B_t)_t$).

Spatial approximation

At time t > 0: Particles play against a red particle with probability $\rho \mathbb{P}(R_t > 0)$. Particles play against a blue particle with probability $\beta \mathbb{P}(B_t > 0)$.

We call the induced stochastic process : $(\sigma_t^{mf})_t$.

Mean Field Result

Theorem

If each particle has an initial wealth of $q_0 > 0$ then : Let $\eta > 1$ satisfying

$$q_0 - rac{\eta^2 v(C^2 + S^2)}{4(eta(1 - rac{1}{\eta^2})C -
ho S)} > 0$$

called the starter condition and also satisfying :

$$\beta C - \rho S > C/\eta^2.$$

Then we have : $\forall t > 0$

$$\mathbb{P}(B_t>0)\geq 1-\frac{1}{\eta^2}>0$$

Example

For $q_0 = 50, v = 1, S = 2, R = 1, \beta = 0.6, \rho = 0.2$ we have a density of blue player always higher than 52%.

Demographic prisoner's dilemma

Results and proves

Further Research

Convergence to the Mean Field Model

Intermediate Model

Model

- Finite number of players.
- All the players are on the same site.
- Spatial condition replaced by : Game cancelled with probability : $1 - (1/m)^2$

We call the induced stochastic process : $(\hat{\sigma}_t)_t$

Convergence to the Intermediate model

Theorem

Let μ^d be the law of the wealth of all particles in the spatialized model. Let μ be the law of the wealth of all particles in the intermediate model. We have the following convergence :

$$\mu^d \xrightarrow[d \to +\infty]{} \mu$$

Other way of moving : Instinctive move with curiosity

Way of moving

Let p > 0,

- With probability p : the particle move randomly
- With probability 1 p : the particle move instinctively *i.e.* If its last encounter is with a blue particle it stays else it moves.

Theorem

The two first theorem (almost sure extinction and ad vitam eternam survival) hold.

Results and proves

Further Research

Instinctive moving : Simulation

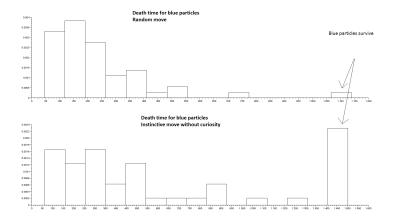


FIGURE: Comparison survival with instinctive moving and with random moving

Thank you for your attention