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Introduction

◮ Multiattribute utility theory (MAUT) is a widely used
framework for decision under multiple criteria

◮ The most popular models in MAUT are the additive utility
model, and the multiplicative model, satisfying (mutual)
preferential independence

◮ So far, few models take into account interaction between
criteria: the Choquet integral model (Lovász extension), and
the multilinear model (Owen extension)

◮ The GAI (Generalized Additive Independence) model
generalizes the additive model, does not satisfy preferential
independence, and includes as particular cases CI, MLE

◮ Aim of the talk: relate the GAI model with k-ary capacities.
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◮ N = {1, . . . , n}: set of attributes

◮ Xi : set of values of attribute i

◮ X = X1 × · · · × Xn: set of potential alternatives

◮ <i : preference relation on Xi

◮ Aim: find a utility function U : X → R representing the
preference of the DM on X

◮ Assumption 1: Monotonicity:

∀i ∈ N, xi <i yi ⇒ U(x) ≥ U(y)

◮ Assumption 2: Boundaries:

U(x⊤
i , . . . , x⊤

n ) = 1, U(x⊥
i , . . . , x⊥

n ) = 0

with x⊤
i , x⊥

i the best and worst elements of Xi according to <i
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◮ Additive Utility model

U(x) = u1(x1) + · · · + un(xn)

◮ GAI model (Fishburn 1967)

U(x) =
∑

S∈S

uS(xS )

with S ⊆ 2N \ {∅} and uS : XS → R

◮ Each term uS is supposed to represent the interaction among
attributes in S

◮ A GAI model is p-additive if any set S ∈ S satisfies |S | ≤ p.
Hence, a 1-additive GAI model is a classical additive utility
model.
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◮ S ⊆ T implies v(S) ≤ v(T ) (monotonicity)

◮ A capacity v is normalized if v(N) = 1.

◮ Writing 2N ≡ {0, 1}N , v(S) can be rewritten as v(1S )

◮ One may then consider k-ary capacities (G. and Labreuche
2003) v : {0, 1, . . . , k}N → R (a.k.a. multichoice games,
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Capacities and k-ary capacities

◮ A capacity (Choquet 1953) is a set function v : 2N → R such
that

◮ v(∅) = 0
◮ S ⊆ T implies v(S) ≤ v(T ) (monotonicity)

◮ A capacity v is normalized if v(N) = 1.

◮ Writing 2N ≡ {0, 1}N , v(S) can be rewritten as v(1S )

◮ One may then consider k-ary capacities (G. and Labreuche
2003) v : {0, 1, . . . , k}N → R (a.k.a. multichoice games,
Hsiao and Raghavan 1990):

v(0) = 0, z ≤ z ′ ⇒ v(z) ≤ v(z ′)

◮ 1-ary capacities are classical capacities

◮ v is normalized if v(1) = 1

◮ Here we consider only normalized k-ary capacities
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Discrete GAI models are k-ary capacities

◮ We consider that attributes are discrete:

Xi = {a0
i , . . . , a

mi

i }

with a0
i 4i · · · 4i ami
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◮ We consider that attributes are discrete:

Xi = {a0
i , . . . , a

mi
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with a0
i 4i · · · 4i ami

i .

◮ Any alternative x ∈ X is mapped to
{0, . . . ,m1} × · · · × {0, . . . ,mn} by x 7→ ϕ(x)

◮ Letting k = maxi mi , we consider {0, . . . , k}N

◮ Given a GAI model U with discrete attributes, we define
v : {0, . . . , k}N → R by

U(x) =: v(ϕ(x)) (x ∈ X )

and let v(z) := v(m1, . . . ,mn) when z ∈ {0, . . . , k}N \ ϕ(X ).
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Discrete GAI models are k-ary capacities

◮ We consider that attributes are discrete:

Xi = {a0
i , . . . , a

mi

i }

with a0
i 4i · · · 4i ami

i .

◮ Any alternative x ∈ X is mapped to
{0, . . . ,m1} × · · · × {0, . . . ,mn} by x 7→ ϕ(x)

◮ Letting k = maxi mi , we consider {0, . . . , k}N

◮ Given a GAI model U with discrete attributes, we define
v : {0, . . . , k}N → R by

U(x) =: v(ϕ(x)) (x ∈ X )

and let v(z) := v(m1, . . . ,mn) when z ∈ {0, . . . , k}N \ ϕ(X ).

◮ By assumptions 1 and 2 on U, it follows that v is a
normalized k-ary capacity on N
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◮ Let v : 2N → R be a capacity. Its Möbius transform mv is the
(unique) solution of
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given by

mv (S) =
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mv (S) =
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T⊆S
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◮ A capacity v is (at most) p-additive if mv(S) = 0 whenever
|S | > p.

◮ Given a k-ary capacity v , its Möbius transform mv is
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◮ Let v : 2N → R be a capacity. Its Möbius transform mv is the
(unique) solution of

v(S) =
∑

T⊆S

mv (T )

given by

mv (S) =
∑

T⊆S

(−1)|S\T |v(T )

◮ A capacity v is (at most) p-additive if mv(S) = 0 whenever
|S | > p.

◮ Given a k-ary capacity v , its Möbius transform mv is
defined as the unique solution of v(z) =

∑

y≤z mv (y), which is:

mv (z) =
∑

y≤z : zi−yi≤1∀i∈N

(−1)
P

i∈N(zi−yi )v(y)

◮ A k-ary capacity is (at most) p-additive if mv (z) = 0
whenever |supp(z)| > p, where

supp(z) = {i ∈ N | zi > 0}
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A GAI model is p-additive if any set S ∈ S satisfies |S | ≤ p.
Hence, a 1-additive GAI model is a classical additive utility model.
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A GAI model is p-additive if any set S ∈ S satisfies |S | ≤ p.
Hence, a 1-additive GAI model is a classical additive utility model.

Lemma
Let k ∈ N and p ∈ {1, . . . , n}. A k-ary game v is p-additive if and
only if it has the form

v(z) =
∑

x∈{0,...,k}N ,|supp(x)|≤p

vx(x ∧ z)

where vx : {0, . . . , k}N → R with vx(0) = 0.
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p-additive discrete GAI models are p-additive k-ary

capacities

A GAI model is p-additive if any set S ∈ S satisfies |S | ≤ p.
Hence, a 1-additive GAI model is a classical additive utility model.

Lemma
Let k ∈ N and p ∈ {1, . . . , n}. A k-ary game v is p-additive if and
only if it has the form

v(z) =
∑

x∈{0,...,k}N ,|supp(x)|≤p

vx(x ∧ z)

where vx : {0, . . . , k}N → R with vx(0) = 0.

It follows that p-additive discrete GAI models are p-additive k-ary
capacities (for some k ∈ N).
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The problem

In general, if U is a GAI model, its decomposition is not unique.
For example:

U(x1, x2) = 2x1 + x2 − max(x1, x2) (x ∈ R
2
+)

is equivalent to

U(x1, x2) = x1 + min(x1, x2) (x ∈ R
2
+)

Observe that in the 2nd decomposition, all terms are nonnegative
and monotone nondecreasing.

Given a GAI model, is it always possible to get a
decomposition into nonnegative nondecreasing terms?

We answer this question for 2-additive discrete GAI models (and
the answer is: Yes!)

M. Grabisch and Ch. Labreuche c©2016 The GAI model and k-ary capacities



Why it is important to solve this problem

◮ Determining a 2-additive GAI model with k + 1 elements in
each attribute by learning yields an optimization problem with

(k + 1)

(

n

1

)

+ (k + 1)2
(

n

2

)

unknowns.
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◮ Moreover, U being nondecreasing, we have
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monotonicity conditions to satisfy.
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Why it is important to solve this problem

◮ Determining a 2-additive GAI model with k + 1 elements in
each attribute by learning yields an optimization problem with

(k + 1)

(

n

1

)

+ (k + 1)2
(

n

2

)

unknowns.

◮ Moreover, U being nondecreasing, we have
n × k × (k + 1)n−1

monotonicity conditions to satisfy.

◮ If a decomposition into nonnegative nondecreasing terms is
possible, one has only to check monotonicity of each term.
Then the number of monotonicity conditions drops to

n × k ×
[

(n − 1)(k + 1) + 1
]
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Why it is important to solve this problem

Comparison table with k = 4:

n 4 6 8 10
♯ of constraints 2000 75 000 2 500 000 78 125 000
♯ of constraints
with monotone
decomposition

256 624 1152 1840

n 12 14 20
♯ of constraints 2 343 750 000 68 359 375 000 1.526E + 15
♯ of constraints
with monotone
decomposition

2688 3696 7680
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The main result

Theorem
Let us consider a 2-additive discrete GAI model U satisfying
assumptions 1 and 2. Then there exist nonnegative and
nondecreasing functions ui : Xi → [0, 1], i ∈ N,
uij : Xi × Xj → [0, 1], {i , j} ⊆ N, such that

U(x) =
∑

i∈N

ui(xi ) +
∑

{i ,j}⊆N

uij(xi , xj) (x ∈ X )
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Sketch of the proof

◮ The problem is equivalent to the decomposition of a
2-additive normalized k-ary capacity v into a sum of
2-additive k-ary capacities whose support has size at most 2
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Sketch of the proof

◮ The problem is equivalent to the decomposition of a
2-additive normalized k-ary capacity v into a sum of
2-additive k-ary capacities whose support has size at most 2

◮ support of v :

supp(v) =
⋃

x∈LN :mv (x)6=0

supp(x)

(i.e., v depends only on the variables in supp(v))

◮ Let Pk,2 be the polytope of all normalized 2-additive k-ary
capacities

◮ We prove that any vertex of Pk,2 has support of size at most 2

◮ Since any v ∈ Pk,2 is a convex combination of vertices of
Pk,2, which are normalized 2-additive k-ary capacities, the
desired result follows.
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Vertices of Pk ,2

Theorem
Let k ∈ N. The set of extreme points of Pk,2, the polytope of
normalized 2-additive k-ary capacities, is the set of 0-1-valued
2-additive k-ary capacities.
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Vertices of Pk ,2

Theorem
Let k ∈ N. The set of extreme points of Pk,2, the polytope of
normalized 2-additive k-ary capacities, is the set of 0-1-valued
2-additive k-ary capacities.

Theorem
For every k ∈ N, the size of the support of any 0-1-valued
2-additive k-ary capacity is at most 2.
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Vertices of Pk ,2: sketch of the proof

We recall that a matrix A is totally unimodular iff the polyhedron
Ax ≤ b is integer for every b.
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Vertices of Pk ,2: sketch of the proof

We recall that a matrix A is totally unimodular iff the polyhedron
Ax ≤ b is integer for every b.

◮ Step 1: the set of vertices of Pk,· (normalized k-ary
capacities) is the set of 0-1-valued k-ary capacities. Therefore,
it remains to prove that any vertex of Pk,2 is 0-1-valued.
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Vertices of Pk ,2: sketch of the proof

We recall that a matrix A is totally unimodular iff the polyhedron
Ax ≤ b is integer for every b.

◮ Step 1: the set of vertices of Pk,· (normalized k-ary
capacities) is the set of 0-1-valued k-ary capacities. Therefore,
it remains to prove that any vertex of Pk,2 is 0-1-valued.

◮ Step 2: We prove that Ak,·, the matrix defining Pk,·, is totally
unimodular

◮ It follows that the polytope Ak,·x ≤ b is integer ∀b, and so is
the polytope Am

k,·m
v ≤ b for all b (same in the Möbius

transform coordinates). Therefore, Am
k,· is also totally

unimodular.
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Vertices of Pk ,2: sketch of the proof

We recall that a matrix A is totally unimodular iff the polyhedron
Ax ≤ b is integer for every b.

◮ Step 1: the set of vertices of Pk,· (normalized k-ary
capacities) is the set of 0-1-valued k-ary capacities. Therefore,
it remains to prove that any vertex of Pk,2 is 0-1-valued.

◮ Step 2: We prove that Ak,·, the matrix defining Pk,·, is totally
unimodular

◮ It follows that the polytope Ak,·x ≤ b is integer ∀b, and so is
the polytope Am

k,·m
v ≤ b for all b (same in the Möbius

transform coordinates). Therefore, Am
k,· is also totally

unimodular.

◮ As Am
k,2 is a submatrix of Am

k,·, it is also totally unimodular.
Therefore, the vertices of Pm

k,2 are integer-valued.
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Vertices of Pk ,2: sketch of the proof

We recall that a matrix A is totally unimodular iff the polyhedron
Ax ≤ b is integer for every b.

◮ Step 1: the set of vertices of Pk,· (normalized k-ary
capacities) is the set of 0-1-valued k-ary capacities. Therefore,
it remains to prove that any vertex of Pk,2 is 0-1-valued.

◮ Step 2: We prove that Ak,·, the matrix defining Pk,·, is totally
unimodular

◮ It follows that the polytope Ak,·x ≤ b is integer ∀b, and so is
the polytope Am

k,·m
v ≤ b for all b (same in the Möbius

transform coordinates). Therefore, Am
k,· is also totally

unimodular.

◮ As Am
k,2 is a submatrix of Am

k,·, it is also totally unimodular.
Therefore, the vertices of Pm

k,2 are integer-valued.

◮ We prove that the vertices of Pm
k,2 are {−1, 0, 1}-valued.
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Vertices of Pk ,2: sketch of the proof

We recall that a matrix A is totally unimodular iff the polyhedron
Ax ≤ b is integer for every b.

◮ Step 1: the set of vertices of Pk,· (normalized k-ary
capacities) is the set of 0-1-valued k-ary capacities. Therefore,
it remains to prove that any vertex of Pk,2 is 0-1-valued.

◮ Step 2: We prove that Ak,·, the matrix defining Pk,·, is totally
unimodular

◮ It follows that the polytope Ak,·x ≤ b is integer ∀b, and so is
the polytope Am

k,·m
v ≤ b for all b (same in the Möbius

transform coordinates). Therefore, Am
k,· is also totally

unimodular.

◮ As Am
k,2 is a submatrix of Am

k,·, it is also totally unimodular.
Therefore, the vertices of Pm

k,2 are integer-valued.

◮ We prove that the vertices of Pm
k,2 are {−1, 0, 1}-valued.

◮ We prove that v is 0-1-valued iff mv is {−1, 0, 1}-valued. The
desired result then follows.

M. Grabisch and Ch. Labreuche c©2016 The GAI model and k-ary capacities



Determination of all vertices of Pk ,2

Preliminary step: one shows that the vertices of Pk,2 with support
included in, say, {1, 2}, are in bijection with the antichains (which
are of size at most k + 1) of the lattice (k + 1)2.
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Determination of all vertices of Pk ,2

Preliminary step: one shows that the vertices of Pk,2 with support
included in, say, {1, 2}, are in bijection with the antichains (which
are of size at most k + 1) of the lattice (k + 1)2.
Hence denumbering the vertices amounts to denumbering the
antichains of (k + 1)2.
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Determination of all vertices of Pk ,2

Preliminary step: one shows that the vertices of Pk,2 with support
included in, say, {1, 2}, are in bijection with the antichains (which
are of size at most k + 1) of the lattice (k + 1)2.
Hence denumbering the vertices amounts to denumbering the
antichains of (k + 1)2.

Theorem
Let k ∈ N and consider the polytope Pk,2. The following holds.

1. For any i ∈ N, the number of vertices with support {i} is k.

2. For any distinct i , j ∈ N, the number of vertices with support

included in {i , j} is

(

2k + 2

k + 1

)

− 2.

3. The total number of vertices of Pk,2 is

[

(

2k + 2

k + 1

)

− 2

]

n(n − 1)

2
− kn(n − 2).
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More details on vertices

◮ Any vertex is 0-1-valued and has support of size at most 2,
say {1, 2}
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◮ Any vertex is 0-1-valued and has support of size at most 2,
say {1, 2}

◮ Hence vertices are linear combination of unanimity games
with support included in {1, 2}
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◮ Any vertex is 0-1-valued and has support of size at most 2,
say {1, 2}

◮ Hence vertices are linear combination of unanimity games
with support included in {1, 2}

◮ By analogy, x ∈ LN is winning for v if v(x) = 1
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◮ Any vertex is 0-1-valued and has support of size at most 2,
say {1, 2}

◮ Hence vertices are linear combination of unanimity games
with support included in {1, 2}

◮ By analogy, x ∈ LN is winning for v if v(x) = 1

◮ supp(v) ⊆ {1, 2} iff its minimal winning coalitions have their
support in {1, 2}, and there can be at most k + 1 distinct
minimal winning coalitions
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More details on vertices

◮ Any vertex is 0-1-valued and has support of size at most 2,
say {1, 2}

◮ Hence vertices are linear combination of unanimity games
with support included in {1, 2}

◮ By analogy, x ∈ LN is winning for v if v(x) = 1

◮ supp(v) ⊆ {1, 2} iff its minimal winning coalitions have their
support in {1, 2}, and there can be at most k + 1 distinct
minimal winning coalitions

◮ Suppose that supp(v) ⊆ {1, 2}. Denote by x1, . . . , xq the
minimal winning coalitions of v , arranged such that
x1
1 < x2

1 · · · < xq
1 . Then mv (xℓ) = 1 for all ℓ = 1, . . . , q,

mv (xℓ ∨ xℓ+1) = −1 for ℓ = 1, . . . , q − 1, and mv (x) = 0
otherwise.
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More details on vertices
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More details on vertices
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