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Introduction

» Multiattribute utility theory (MAUT) is a widely used
framework for decision under multiple criteria

» The most popular models in MAUT are the additive utility
model, and the multiplicative model, satisfying (mutual)
preferential independence

» So far, few models take into account interaction between
criteria: the Choquet integral model (Lovdsz extension), and
the multilinear model (Owen extension)

» The GAI (Generalized Additive Independence) model
generalizes the additive model, does not satisfy preferential
independence, and includes as particular cases Cl, MLE

» Aim of the talk: relate the GAIl model with k-ary capacities.
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X;: set of values of attribute /

>
>
> X = X X -+ x X, set of potential alternatives
» ;. preference relation on X;

>

Aim: find a utility function U : X — R representing the
preference of the DM on X

v

Assumption 1: Monotonicity:

Vi e N,X,' =i Yi = U(X) > U(y)
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Framework

N ={1,...,n}: set of attributes

X;: set of values of attribute /

>
>
> X = X X -+ x X, set of potential alternatives
» ;. preference relation on X;

>

Aim: find a utility function U : X — R representing the
preference of the DM on X

v

Assumption 1: Monotonicity:

Vi e N,X,' =i Yi = U(X) > U(y)

v

Assumption 2: Boundaries:
Ux',...,x))=1, U(xt,....,xt)=0

with x.", xi- the best and worst elements of X; according to 3=;
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The GAIl (Generalized Additive Independence) model

» Additive Utility model
U(x) = u1(x1) + -+ + un(xn)

» GAl model (Fishburn 1967)

U(x) = us(xs)
Ses
with & C 2N\ {#} and us : Xs — R
» Each term ug is supposed to represent the interaction among
attributes in S

» A GAIl model is p-additive if any set S € S satisfies |S| < p.
Hence, a 1-additive GAl model is a classical additive utility
model.
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Capacities and k-ary capacities

> A capacity (Choquet 1953) is a set function v : 2V — R such
that

» v(#)=0
» S C T implies v(S) < v(T) (monotonicity)

> A capacity v is normalized if v(N) = 1.

» Writing 2V = {0, 1}V, v(S) can be rewritten as v(1s)

» One may then consider k-ary capacities (G. and Labreuche
2003) v:{0,1,...,k}N — R (a.k.a. multichoice games,
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Capacities and k-ary capacities

> A capacity (Choquet 1953) is a set function v : 2V — R such
that

» v(#)=0

» S C T implies v(S) < v(T) (monotonicity)
A capacity v is normalized if v(N) = 1.
Writing 2V = {0,1}V, v(S) can be rewritten as v(1s)
One may then consider k-ary capacities (G. and Labreuche
2003) v:{0,1,...,k}N — R (a.k.a. multichoice games,
Hsiao and Raghavan 1990):

v(0) =0, z<Z = v(z)<v(Z)

1-ary capacities are classical capacities

v
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Capacities and k-ary capacities

> A capacity (Choquet 1953) is a set function v : 2V — R such
that

» v(#)=0

» S C T implies v(S) < v(T) (monotonicity)
A capacity v is normalized if v(N) = 1.
Writing 2V = {0,1}V, v(S) can be rewritten as v(1s)
One may then consider k-ary capacities (G. and Labreuche
2003) v:{0,1,...,k}N — R (a.k.a. multichoice games,
Hsiao and Raghavan 1990):

v(0) =0, z<Z = v(z)<v(Z)

1-ary capacities are classical capacities

v

v

v

v

v

v is normalized if v(1) =1

v

Here we consider only normalized k-ary capacities
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Discrete GAlI models are k-ary capacities

» We consider that attributes are discrete:

Xi :{a?,...,alf""}

with a9 <; -+ < a".
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Discrete GAlI models are k-ary capacities

» We consider that attributes are discrete:
X = {a?,...,a,f"f}

with a9 <; -+ < a".
» Any alternative x € X is mapped to
{0,...,m} x - x{0,...,mp} by x — ©(x)
> Letting k = max; m;, we consider {0, ..., k}V
» Given a GAl model U with discrete attributes, we define
v:{0,...,k}" - R by

U(x) = v(p(x))  (xeX)

and let v(z) := v(my,...,m,) when z € {0,..., k}V \ ¢(X).
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Discrete GAlI models are k-ary capacities

» We consider that attributes are discrete:
X = {a?,...,a,f"f}

with a9 <; -+ < a".
» Any alternative x € X is mapped to
{0,...,m} x - x{0,...,mp} by x — ©(x)
> Letting k = max; m;, we consider {0, ..., k}V
» Given a GAl model U with discrete attributes, we define
v:{0,...,k}" - R by

U(x) = v(p(x))  (xeX)

and let v(z) := v(my,...,m,) when z € {0,..., k}V \ ¢(X).
» By assumptions 1 and 2 on U, it follows that v is a
normalized k-ary capacity on N
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p-additive capacities and k-ary capacities

» Let v : 2N — R be a capacity. Its Mébius transform m¥ is the
(unique) solution of

v(s) =) m"(T)

TCS

m’(S) =Y _(~1)"\TIy(T)

TCS

given by
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» Let v : 2N — R be a capacity. Its Mébius transform m¥ is the
(unique) solution of

v(s) =) m"(T)

TCS
given by
m“(S) =Y (~1)\TIy(T)
TCS
» A capacity v is (at most) p-additive if m¥(S) = 0 whenever
|S| > p.
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given by
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p-additive capacities and k-ary capacities

» Let v : 2N — R be a capacity. Its Mébius transform m¥ is the
(unique) solution of

v(s) =) m"(T)

TCS
given by
m“(S) =Y (~1)\TIy(T)
TCS
» A capacity v is (at most) p-additive if m¥(S) = 0 whenever
|S| > p.

» Given a k-ary capacity v, its Mobius transform m" is
defined as the unique solution of v(z) = > , m“(y), which is:
m'z)= 3 (F)Eetivy)
y<z : zi—y;<1LVieN
» A k-ary capacity is (at most) p-additive if m¥(z) =0
whenever |supp(z)| > p, where
supp(z) ={i € N | z; > 0}
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p-additive discrete GAl models are p-additive k-ary

capacities

A GAIl model is p-additive if any set S € S satisfies |S| < p.
Hence, a 1-additive GAl model is a classical additive utility model.
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p-additive discrete GAl models are p-additive k-ary

capacities

A GAIl model is p-additive if any set S € S satisfies |S| < p.
Hence, a 1-additive GAl model is a classical additive utility model.

Lemma

Let ke Nand p € {1,...,n}. A k-ary game v is p-additive if and
only if it has the form

v(z) = Z V(X A z)

x€{0,....k}N [supp(x)|<p

where vy : {0,..., k}N — R with v(0) = 0.
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p-additive discrete GAl models are p-additive k-ary

capacities

A GAIl model is p-additive if any set S € S satisfies |S| < p.
Hence, a 1-additive GAl model is a classical additive utility model.

Lemma
Let ke Nand p € {1,...,n}. A k-ary game v is p-additive if and
only if it has the form

v(z) = Z V(X A z)
XE{O,...,k}N,|Supp(X)|Sp
where vy : {0,..., k}N — R with v(0) = 0.

It follows that p-additive discrete GAl models are p-additive k-ary
capacities (for some k € N).
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In general, if U is a GAI model, its decomposition is not unique.
For example:

U(x1,x2) = 2x1 + xo — max(x1, x2) (x €R%)
is equivalent to

U(x1,x2) = x1 + min(x1, x2) (x e RY)
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is equivalent to
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Observe that in the 2nd decomposition, all terms are nonnegative
and monotone nondecreasing.
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is equivalent to
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decomposition into nonnegative nondecreasing terms?
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The problem

In general, if U is a GAI model, its decomposition is not unique.
For example:

U(x1,x2) = 2x1 + xo — max(x1, x2) (x €R%)
is equivalent to
U(x1,x2) = x1 + min(x1, x2) (x € R%)

Observe that in the 2nd decomposition, all terms are nonnegative
and monotone nondecreasing.

Given a GAl model, is it always possible to get a
decomposition into nonnegative nondecreasing terms?

We answer this question for 2-additive discrete GAI models (and
the answer is: Yes!)
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Why it is important to solve this problem

» Determining a 2-additive GAl model with k + 1 elements in
each attribute by learning yields an optimization problem with

(k+1) <'17> + (k +1)2 <'27)

unknowns.
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Why it is important to solve this problem

» Determining a 2-additive GAl model with k + 1 elements in
each attribute by learning yields an optimization problem with

(k+1) <'17> + (k +1)2 <'27)

» Moreover, U being nondecreasing, we have
nxkx(k+1)"1
monotonicity conditions to satisfy.

unknowns.

» If a decomposition into nonnegative nondecreasing terms is
possible, one has only to check monotonicity of each term.
Then the number of monotonicity conditions drops to

nx k [(n—l)(k—i—l)—i—l
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Why it is important to solve this problem

Comparison table with k = 4:

n 4 6 8 10
ff of constraints 2000 | 75 000 | 2 500 000 | 78 125 000
g of constraints | 256 624 1152 1840

with  monotone
decomposition

n 12 14 20
ff of constraints 2 343 750 000 | 68 359 375 000 | 1.526E + 15
g of constraints 2688 3696 7680

with  monotone
decomposition
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The main result

Theorem

Let us consider a 2-additive discrete GAl model U satisfying
assumptions 1 and 2. Then there exist nonnegative and
nondecreasing functions u; : X; — [0,1], i € N,

uj: Xi x X; — [0,1], {i,j} € N, such that

UR) =Y ula)+ D uilug)  (x€X)

ieN {ij}CN
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Sketch of the proof

» The problem is equivalent to the decomposition of a
2-additive normalized k-ary capacity v into a sum of
2-additive k-ary capacities whose support has size at most 2

The GAl model and k-ary capacities
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Sketch of the proof

» The problem is equivalent to the decomposition of a
2-additive normalized k-ary capacity v into a sum of
2-additive k-ary capacities whose support has size at most 2

> support of v:
swp(v) = | sup(x)
x€LN:mv(x)#£0
(i.e., v depends only on the variables in supp(v))
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» The problem is equivalent to the decomposition of a
2-additive normalized k-ary capacity v into a sum of
2-additive k-ary capacities whose support has size at most 2

> support of v:
swp(V) = |J  supp(x)
x€LN:mv(x)#£0
(i.e., v depends only on the variables in supp(v))
> Let Py o be the polytope of all normalized 2-additive k-ary
capacities
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Sketch of the proof

» The problem is equivalent to the decomposition of a
2-additive normalized k-ary capacity v into a sum of
2-additive k-ary capacities whose support has size at most 2

> support of v:

swp(v) = | sup(x)
x€LN:mv(x)#£0
(i.e., v depends only on the variables in supp(v))
> Let Py o be the polytope of all normalized 2-additive k-ary
capacities

» We prove that any vertex of Py o> has support of size at most 2
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Sketch of the proof

» The problem is equivalent to the decomposition of a
2-additive normalized k-ary capacity v into a sum of
2-additive k-ary capacities whose support has size at most 2

> support of v:
supp(v) = | supp(x)
x€LN:mv(x)#£0
(i.e., v depends only on the variables in supp(v))
> Let Py o be the polytope of all normalized 2-additive k-ary
capacities
» We prove that any vertex of Py o> has support of size at most 2
» Since any v € Py 5 is a convex combination of vertices of
P2, which are normalized 2-additive k-ary capacities, the
desired result follows.
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Vertices of Py

Theorem

Let k € N. The set of extreme points of Py 5, the polytope of
normalized 2-additive k-ary capacities, is the set of 0-1-valued
2-additive k-ary capacities.
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Vertices of Py

Theorem

Let k € N. The set of extreme points of Py 5, the polytope of
normalized 2-additive k-ary capacities, is the set of 0-1-valued
2-additive k-ary capacities.

Theorem
For every k € N, the size of the support of any 0-1-valued
2-additive k-ary capacity is at most 2.
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Vertices of Py »: sketch of the proof

We recall that a matrix A is totally unimodular iff the polyhedron
Ax < b is integer for every b.
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Vertices of Py »: sketch of the proof

We recall that a matrix A is totally unimodular iff the polyhedron
Ax < b is integer for every b.
> Step 1: the set of vertices of Py . (normalized k-ary
capacities) is the set of 0-1-valued k-ary capacities. Therefore,
it remains to prove that any vertex of Py > is 0-1-valued.
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Vertices of Py »: sketch of the proof

We recall that a matrix A is totally unimodular iff the polyhedron
Ax < b is integer for every b.
> Step 1: the set of vertices of Py . (normalized k-ary
capacities) is the set of 0-1-valued k-ary capacities. Therefore,
it remains to prove that any vertex of Py > is 0-1-valued.

> Step 2: We prove that Ay ., the matrix defining P ., is totally
unimodular
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Vertices of Py »: sketch of the proof

We recall that a matrix A is totally unimodular iff the polyhedron
Ax < b is integer for every b.
> Step 1: the set of vertices of Py . (normalized k-ary
capacities) is the set of 0-1-valued k-ary capacities. Therefore,
it remains to prove that any vertex of Py > is 0-1-valued.
> Step 2: We prove that Ay ., the matrix defining P ., is totally
unimodular
> It follows that the polytope Ay .x < b is integer Vb, and so is
the polytope AP’ m* < b for all b (same in the Mdbius
transform coordinates). Therefore, A7 is also totally
unimodular. 7
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Vertices of Py »: sketch of the proof

We recall that a matrix A is totally unimodular iff the polyhedron
Ax < b is integer for every b.
> Step 1: the set of vertices of Py . (normalized k-ary
capacities) is the set of 0-1-valued k-ary capacities. Therefore,
it remains to prove that any vertex of Py > is 0-1-valued.
> Step 2: We prove that Ay ., the matrix defining P ., is totally
unimodular
> It follows that the polytope Ay .x < b is integer Vb, and so is
the polytope AP’ m* < b for all b (same in the Mdbius
transform coordinates). Therefore, A7 is also totally
unimodular. 7
> As A7, is a submatrix of A, it is also totally unimodular.
There{core, the vertices of 77,2’:'2 are integer-valued.
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We recall that a matrix A is totally unimodular iff the polyhedron
Ax < b is integer for every b.
> Step 1: the set of vertices of Py . (normalized k-ary
capacities) is the set of 0-1-valued k-ary capacities. Therefore,
it remains to prove that any vertex of Py > is 0-1-valued.
> Step 2: We prove that Ay ., the matrix defining P ., is totally
unimodular
> It follows that the polytope Ay .x < b is integer Vb, and so is
the polytope AP’ m* < b for all b (same in the Mdbius
transform coordinates). Therefore, A7 is also totally
unimodular. 7
> As A7, is a submatrix of A, it is also totally unimodular.
There{core, the vertices of 77,2’:'2 are integer-valued.
> We prove that the vertices of P/, are {—1,0,1}-valued.
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Vertices of Py »: sketch of the proof

We recall that a matrix A is totally unimodular iff the polyhedron
Ax < b is integer for every b.
> Step 1: the set of vertices of Py . (normalized k-ary
capacities) is the set of 0-1-valued k-ary capacities. Therefore,
it remains to prove that any vertex of Py > is 0-1-valued.
> Step 2: We prove that Ay ., the matrix defining P ., is totally
unimodular
> It follows that the polytope Ay .x < b is integer Vb, and so is
the polytope AP’ m* < b for all b (same in the Mdbius
transform coordinates). Therefore, A7 is also totally
unimodular. 7
> As A7, is a submatrix of A, it is also totally unimodular.
There{core, the vertices of 77,2’:'2 are integer-valued.
> We prove that the vertices of P/, are {—1,0,1}-valued.
» We prove that v is 0-1-valued iff m" is {—1,0, 1}-valued. The
desired result then follows.
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Determination of all vertices of Py

Preliminary step: one shows that the vertices of P > with support
included in, say, {1,2}, are in bijection with the antichains (which
are of size at most k + 1) of the lattice (k + 1)2.
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Determination of all vertices of Py

Preliminary step: one shows that the vertices of Py > with support
included in, say, {1,2}, are in bijection with the antichains (which
are of size at most k + 1) of the lattice (k + 1)2.

Hence denumbering the vertices amounts to denumbering the
antichains of (k + 1)2.
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Determination of all vertices of Py

Preliminary step: one shows that the vertices of Py > with support
included in, say, {1,2}, are in bijection with the antichains (which
are of size at most k + 1) of the lattice (k + 1)2.
Hence denumbering the vertices amounts to denumbering the
antichains of (k + 1)2.
Theorem
Let k € N and consider the polytope P >. The following holds.

1. For any i € N, the number of vertices with support {i} is k.

2. For any distinct i,j € N, the number of vertices with support

2k +2
included in {i,j} is < k—:_l > -2

3. The total number of vertices of Py > is

<2k+2> _4@ — kn(n—2).

k+1 2
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More details on vertices

» Any vertex is 0-1-valued and has support of size at most 2,
say {1,2}
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» Any vertex is 0-1-valued and has support of size at most 2,
say {1,2}

» Hence vertices are linear combination of unanimity games
with support included in {1,2}
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More details on vertices

» Any vertex is 0-1-valued and has support of size at most 2,
say {1,2}

» Hence vertices are linear combination of unanimity games
with support included in {1,2}

» By analogy, x € LN is winning for v if v(x) =1
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More details on vertices

» Any vertex is 0-1-valued and has support of size at most 2,
say {1,2}

» Hence vertices are linear combination of unanimity games
with support included in {1,2}

» By analogy, x € LN is winning for v if v(x) =1

» supp(v) C {1, 2} iff its minimal winning coalitions have their
support in {1,2}, and there can be at most k + 1 distinct
minimal winning coalitions

M. Grabisch and Ch. Labreuche (©)2016 The GAl model and k-ary capacities



More details on vertices

» Any vertex is 0-1-valued and has support of size at most 2,
say {1,2}

» Hence vertices are linear combination of unanimity games
with support included in {1,2}

» By analogy, x € LN is winning for v if v(x) =1

» supp(v) C {1, 2} iff its minimal winning coalitions have their
support in {1,2}, and there can be at most k + 1 distinct
minimal winning coalitions

» Suppose that supp(v) C {1,2}. Denote by x!,...,x9 the
minimal winning coalitions of v, arranged such that

xt<xt---<xi. Thenm’(x*)=1forall£=1,...,q,
m'(x* vx*l)y=~1fort=1,...,g—1, and m“(x) =0
otherwise.
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