Mechanism Design and Allocation Algorithms for Network Markets

with piece-wise linear costs and quadratic externalities
$\frac{\text { Benjamin Heymann }}{}{ }^{1}$
${ }^{1}$ INRIA and Ecole polytechnique, France
${ }^{2} \mathrm{CMM}$ and Universidad de Chile
MODE 2016

Motivation

- Many countries are undertaking changes in their electricity market regulation.
- Previous works show how regulation mechanisms allow the producers to charge significantly more than their marginal prices.
- Question raised: What could be done about this ?

Mechanism Design and Allocation Algorithms for Network Markets
with Piece-wise linear Costs and Quadratic Externalities
1 The two agent problem

- A simple auction

■ What if we put some frictions in the model ?

- Some previous results

■ Mechanism design
2 General setting
3 Standard allocation

- The optimization problem
- Fixed point

■ Regularity
4 Mechanism design

- Result
- Discussion

A simple auction

- On one hand two electricity producers (AKA agents a_{1} and a_{2}) have a marginal production $\operatorname{cost} c_{1}$ and c_{2} respectively.
- On the other hand, a central operator (AKA principal) need to by two units of electricity.
- Agent $i=1 . .2$ bids a marginal price b_{i}.
- The principal chose the lowest bid.
- Nash equilibrium in pur strategy and complete information for symmetric agents: bid c, earn 0 .

What if we put some frictions in the model ?

When a quantity h of electricity is sent from node 1 to node 2 we loose $r h^{2}$ in the process.

The principal solves

```
minimize \(c_{1} q_{1}+c_{2} q_{2}\)
\(q, h\)
```

subject to:

$$
\begin{aligned}
& q_{i}-h_{i}+h_{-i} \geq \frac{r}{2}\left[h_{1}^{2}+h_{2}^{2}\right]+d \text { for } i=1,2 \\
& q_{i}, h_{i} \geq 0 \text { for } i=1,2
\end{aligned}
$$

Some already known facts

Allocation solution

$$
F(x, y)=d+\frac{1}{2 r}\left(\frac{x-y}{x+y}\right)^{2}-\frac{1}{r}\left(\frac{x-y}{x+y}\right) \quad \tilde{q}=2\left[\frac{1-\sqrt{1-2 d r}}{r}\right]
$$

Then

$$
q_{i}\left(c_{i}, c_{-i}\right)= \begin{cases}F\left(c_{i}, c_{-i}\right) & \text { if } F\left(c_{i}, c_{-i}\right) \geq 0 \text { and } F\left(c_{-i}, c_{i}\right) \geq 0 \\ \tilde{q} & \text { if } F\left(c_{-i}, c_{i}\right)<0 \text { and } F\left(c_{i}, c_{-i}\right) \geq 0 \\ 0 & \text { if } F\left(c_{i}, c_{-i}\right)<0 \text { and } F\left(c_{-i}, c_{i}\right) \geq 0\end{cases}
$$

Market power from the quadratic externalities

$$
b^{*}=\frac{c}{1-2 d r}
$$

Mechanism Design

Revelation Principle

Theorem (Revelation Principle)

To any Bayesian Nash equilibrium of a game of incomplete information, there exists a payoff-equivalent direct revelation mechanism that has an equilibrium where the players truthfully report their types.

- Idea: change the principal behaviors
- Tool: the revelation principle
- So: we perform an optimization over the truthful direct mechanism (see general case later)

Mechanism Design

Solution

Proposition (Under some hypothesis on f)

If in a mechanism $(\hat{q}, \hat{h}, \hat{x})$ the assignment function (\hat{q}, \hat{h}) solves

$$
\min _{q, h} \int_{C} \sum_{i=1,2} q_{i}(c)\left[c_{i}+\frac{F_{i}\left(c_{i}\right)}{f_{i}\left(c_{i}\right)}\right] f(c) d c
$$

subject to the allocations constraints and the payment function \hat{x} satisfies

$$
\hat{x}_{i}(c)=\hat{q}_{i}(c) c_{i}+\int_{c_{i}}^{\bar{c}_{i}} q_{i}\left(s, c_{-i}\right) d s
$$

then $(\hat{q}, \hat{h}, \hat{x})$ is an optimal mechanism.

Benchmark

Equilibrium gains, $\mathrm{a}=2$

$8 / 23$

Strategies

Bids for $\mathrm{a}=2$

$9 / 23$

General Setting

Example of Network

The Setting

- At each node i :
- There is a fixed demand for electricity d_{i}
- There is an electricity producer whose production cost is piecewise-linear of slopes $\left(c_{i}^{0}, \ldots, c_{i}^{n}\right)$ such that for a production level between $k \bar{q}$ and $(k+1) \bar{q}$, the marginal cost is c_{i}^{k}
- c_{i} is unknown, but we have a probability distribution $f_{i}\left(c_{i}\right)$ on it

The Setting

- At each node i :
- There is a fixed demand for electricity d_{i}
- There is an electricity producer whose production cost is piecewise-linear of slopes $\left(c_{i}^{0}, \ldots, c_{i}^{n}\right)$ such that for a production level between $k \bar{q}$ and $(k+1) \bar{q}$, the marginal cost is c_{i}^{k}
- c_{i} is unknown, but we have a probability distribution $f_{i}\left(c_{i}\right)$ on it
- The nodes are connected by edges

The Setting

- At each node i :
- There is a fixed demand for electricity d_{i}
- There is an electricity producer whose production cost is piecewise-linear of slopes $\left(c_{i}^{0}, \ldots, c_{i}^{n}\right)$ such that for a production level between $k \bar{q}$ and $(k+1) \bar{q}$, the marginal cost is c_{i}^{k}
- c_{i} is unknown, but we have a probability distribution $f_{i}\left(c_{i}\right)$ on it
- The nodes are connected by edges
- When a quantity $h_{i, j}$ of electricity is sent from node i to node j we loose, $r_{i, j} h_{i, j}^{2}$ in the process

The Setting

- At each node i :
- There is a fixed demand for electricity d_{i}
- There is an electricity producer whose production cost is piecewise-linear of slopes $\left(c_{i}^{0}, \ldots, c_{i}^{n}\right)$ such that for a production level between $k \bar{q}$ and $(k+1) \bar{q}$, the marginal cost is c_{i}^{k}
- c_{i} is unknown, but we have a probability distribution $f_{i}\left(c_{i}\right)$ on it
- The nodes are connected by edges
- When a quantity $h_{i, j}$ of electricity is sent from node i to node j we loose, $r_{i, j} h_{i, j}^{2}$ in the process
- Objective for the operator (ISO): To produce enough electricity to meet demand while minimizing the total cost

The Standard Allocation

Optimization problem

Problem

$$
\begin{align*}
\underset{(q, h)}{\operatorname{minimize}} & \sum_{i=1}^{n} \sum_{j=1}^{N} q_{i}^{j} c_{i}^{j} \\
\text { subject to } & \forall i \in I: \sum_{j=1}^{N} q_{i}^{j}+\sum_{i^{\prime} \in V(i)} h_{i^{\prime}, i}-h_{i, i^{\prime}}-\frac{h_{i, i^{\prime}}^{2}+h_{i^{\prime}, i}^{2}}{2} r_{i, i^{\prime}} \geq d_{i} \\
& \forall\left(i, i^{\prime}\right) \in E: h_{i, i^{\prime}} \geq 0 \\
& \forall i \in I, j \in J: q_{i}^{j} \geq 0 \\
& \forall i \in I, j \in J: q_{i}^{j} \leq \bar{q} \tag{1}
\end{align*}
$$

Fixed-Point

$$
\begin{gather*}
F_{i}\left(\lambda_{i}, \lambda_{-i}\right)=d_{i}+\sum_{i^{\prime} \in V(i)} \frac{\lambda_{i^{\prime}}-\lambda_{i}}{r_{i, i^{\prime}}\left(\lambda_{i}+\lambda_{i^{\prime}}\right)}+\frac{\left(\lambda_{i^{\prime}}-\lambda_{i}\right)^{2}}{2 r_{i, i^{\prime}}\left(\lambda_{i}+\lambda_{i^{\prime}}\right)^{2}} . \tag{2}\\
K_{i}\left(\lambda_{i}\right)= \begin{cases}{[k-1, k] \bar{q}} & \text { if } \lambda_{i}=c_{i, k} \\
k \bar{q} & \text { if } \left.\lambda_{i} \in\right] c_{i, k}, c_{i, k+1}[, k \neq N \\
N \bar{q} & \text { if } \left.\lambda_{i} \in \lambda_{i} \in\right] c_{i, N}, \bar{c}[,\end{cases} \tag{3}
\end{gather*}
$$

Lemma

For any $i \in I$ and any $\lambda^{-i} \in\left[\min _{i} c_{i}^{1}, \max _{i} c_{i}^{N}\right]^{n-1}, \Lambda_{i}\left(\lambda_{-i}\right)$ is the unique solution of

$$
\begin{equation*}
F_{i}\left(\Lambda_{i}\left(\lambda_{-i}\right), \lambda_{-i}\right) \in K_{i}\left(\Lambda_{i}\right) \tag{4}
\end{equation*}
$$

Algorithms

Theorem

The sequence $\left(\Lambda^{k}\left(c_{1}^{N} \ldots c_{n}^{N}\right)\right)_{k}$ converges to the solution of the dual.

Regularity

We considere the subset \mathcal{S} of \boldsymbol{C} at which at the same time at some nodes, the multiplicator is equal to the marginal cost and the production is a multiple of \bar{q} (i.e. stuck in an angle):

$$
\begin{align*}
& \mathcal{S}=\left\{c \in C^{n}, q_{i}(c)=j \bar{q} \text { and } \lambda_{i}(c)=c_{j^{\prime}}\right. \tag{5}\\
& \left.\quad \text { for some } i \in I, j \in J, j^{\prime} \in\{j, j+1\}\right\} . \tag{6}
\end{align*}
$$

The set \mathcal{S} corresponds to the point of transition between the two possibilities defined by the first order condition.

Theorem

The function q is C^{∞} on $\boldsymbol{C}^{n} \backslash \mathcal{S}$.

The Mechanism Design

Some definition

The expected profit of an agent writes

$$
U_{i}\left(c_{i}, c_{i}^{\prime}\right)=\mathbb{E}_{-i} u_{i}=X_{i}\left(x, c_{i}^{\prime}\right)-\sum_{j \in[1 . . N]} c_{i}^{j} Q_{i}^{j}\left(c_{i}^{\prime}\right) .
$$

with
$Q_{i}^{j}\left(q, c_{i}\right)=\mathbb{E}_{-i} \min \left(\left(q_{i}\left(c_{i}, c_{-i}\right)-j \bar{q}\right)^{+}, \bar{q}\right) \quad$ and $\quad X_{i}\left(x, c_{i}\right)=\mathbb{E}_{-i} x_{i}\left(c_{i}, c_{-i}\right)$
We denote
$\tilde{f}_{j}^{i}\left(c_{i}, t\right)=\left\{\begin{array}{ll}\frac{f_{i}\left(c_{i}^{-j}, c_{i}^{j}\right)}{f_{i}\left(c_{i}^{-j}, t\right)} & \text { if } f_{i}\left(c_{i}^{-j}, t\right) \neq 0 \\ 0 & \text { else }\end{array} \quad\right.$ and $\quad K_{j}^{i}\left(c_{i}^{-j}, t\right)=\int_{0}^{t} \tilde{f}_{j}^{i}\left(c_{i}, t\right) d c_{i}^{j}$.

The Optimization Problem (P1)

Problem

$$
\begin{aligned}
& \underset{(q, x, h)}{\operatorname{minimize}} \sum_{i \in I} \mathbb{E} x_{i}(c) \\
& \text { subject to } \\
& q_{i}(c)+\sum_{i^{\prime} \in V(i)} h_{i^{\prime}, i}(c)-h_{i, i^{\prime}}(c)-\frac{h_{i, i^{\prime}}^{2}(c)+h_{i^{\prime}, i}^{2}(c)}{2} r_{i, i^{\prime}} \geq d_{i} \\
& h_{i, i^{\prime}}(c) \geq 0 \\
& U_{i}\left(c_{i}, c_{i}\right) \geq U_{i}\left(c_{i}, c_{i}^{\prime}\right) \\
& U_{i}\left(c_{i}, c_{i}\right) \geq 0 .
\end{aligned}
$$

P2

Problem

$$
\underset{(q, x, h)}{\operatorname{minimize}} \sum_{i \in I} \mathbb{E} x_{i}(c)
$$

subject to.

$$
\begin{aligned}
& q_{i}(c)+\sum_{i^{\prime} \in V(i)} h_{i^{\prime}, i}(c)-h_{i, i^{\prime}}(c)-\frac{h_{i, i^{\prime}}^{2}(c)+h_{i^{\prime}, i}^{2}(c)}{2} r_{i, i^{\prime}} \geq d_{i} \\
& h_{i, i^{\prime}}(c) \geq 0 \\
& V_{i}\left(c^{1}, \ldots, c^{j-1}, t_{1}, c^{j+1} . ., c^{N}\right)-V_{i}\left(c^{1}, \ldots, c^{j-1}, t_{2}, c^{j+1} \ldots, c^{N}\right)= \\
& \int_{t_{1}}^{t_{2}} Q_{i}^{j}\left(c^{1}, \ldots, c^{j-1}, s, c^{j+1} . ., c^{N}\right) \mathrm{d} s \\
& \quad\left(c-c^{\prime}\right) \cdot\left(Q(c)-Q\left(c^{\prime}\right)\right) \leq 0
\end{aligned}
$$

P3

Problem

$$
\begin{aligned}
& \underset{(q, x, h)}{\operatorname{minimize}} \mathbb{E} \\
& i \in I \\
& \sum_{j \in J} q_{i}^{j}\left(c_{i}, c_{-i}\right)\left(c_{i}^{j}+K_{i}^{j}\left(c_{i}^{-j}, c_{i}^{j}\right)\right) \\
& \text { subject to } \\
& q_{i}(c)+\sum_{i^{\prime} \in V(i)} h_{i^{\prime}, i}(c)-h_{i, i^{\prime}}(c)-\frac{h_{i, i^{\prime}}^{2}(c)+h_{i^{\prime}, i}^{2}(c)}{2} r_{i, i^{\prime}} \geq d_{i} \\
& h_{i, i^{\prime}}(c) \geq 0 . \\
& x_{i}(c)=\sum_{j=1}^{N}\left(c_{i}^{j}+K_{i}^{j}\left(c_{i}^{-j}, c_{i}^{j}\right)\right) q_{i}^{j}(c)
\end{aligned}
$$

Result

Theorem

Problems 1, 2 and 3 have the same solution.

Discussion

- Stability

■ Benchmark algorithm

- Structure of the auction equilibrium

Conclusion

- We presented a framework for the design of wholesale electricity market as well as tools to compare it with a standard auction setting.
- Many related aspects are currently under study.

Bibliography

Juan F Escobar and Alejandro Jofré.
Monopolistic competition in electricity networks with resistance losses.
Economic theory, 44(1):101-121, 2010.

Nicolas Figueroa, Alejandro Jofré, and Benjamin Heymann.
Cost-minimizing regulations for a wholesale electricity market.
Energy Journal, 2016 (submitted).
Benjamin Heymann and Alejandro Jofré.
Mechanism design and allocation algorithms for network markets with piece-wise linear costs and quadratic externalities.
2016.

Jean-Jacques Laffont and David Martimort.
The theory of incentives: the principal-agent model.
Princeton university press, 2009.
Roger B Myerson.
Optimal auction design.
Mathematics of operations research, 6(1):58-73, 1981.

