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Motivation

Many countries are undertaking changes in their electricity
market regulation.

Previous works show how regulation mechanisms allow the
producers to charge significantly more than their marginal
prices.

Question raised: What could be done about this ?
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The Two Agent Problem
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A simple auction

On one hand two electricity producers (AKA agents a1 and
a2) have a marginal production cost c1 and c2 respectively.

On the other hand, a central operator (AKA principal)
need to by two units of electricity.

Agent i = 1..2 bids a marginal price bi.

The principal chose the lowest bid.

Nash equilibrium in pur strategy and complete information
for symmetric agents: bid c, earn 0.
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What if we put some frictions in the model ?

a1 a2
r

When a quantity h of electricity is sent from node 1 to node 2
we loose rh2 in the process.

minimize
q,h

c1q1 + c2q2

subject to:

qi − hi + h−i ≥
r

2
[h21 + h22] + d for i = 1, 2

qi, hi ≥ 0 for i = 1, 2

The principal solves

♣

4 / 23



Some already known facts

Allocation solution

F (x, y) = d+
1

2r

(
x− y
x+ y

)2

−1

r

(
x− y
x+ y

)
q̃ = 2

[
1−
√

1− 2dr

r

]
Then

qi(ci, c−i) =


F (ci, c−i) if F (ci, c−i) ≥ 0 and F (c−i, ci) ≥ 0
q̃ if F (c−i, ci) < 0 and F (ci, c−i) ≥ 0
0 if F (ci, c−i) < 0 and F (c−i, ci) ≥ 0

Market power from the quadratic externalities

b∗ = c
1−2dr
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Mechanism Design
Revelation Principle

Theorem (Revelation Principle)

To any Bayesian Nash equilibrium of a game of incomplete
information, there exists a payoff-equivalent direct revelation
mechanism that has an equilibrium where the players truthfully
report their types.

Idea: change the principal behaviors

Tool: the revelation principle

So: we perform an optimization over the truthful direct
mechanism (see general case later)
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Mechanism Design
Solution

Proposition (Under some hypothesis on f)

If in a mechanism (q̂, ĥ, x̂) the assignment function (q̂, ĥ) solves

min
q,h

∫
C

∑
i=1,2

qi(c)[ci +
Fi(ci)

fi(ci)
]f(c)dc

subject to the allocations constraints and the payment function
x̂ satisfies

x̂i(c) = q̂i(c)ci +

ci∫
ci

qi(s, c−i)ds

then (q̂, ĥ, x̂) is an optimal mechanism.
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Benchmark
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Figure : The social costs for the standard mechanism and the optimal
mechanism

8 / 23



Strategies
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General Setting
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Example of Network

a1

a2

a3

a4

r1,2

r2,3

r1,4

r2,4 r3,4
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At each node i:

There is a fixed demand for electricity di
There is an electricity producer whose production cost is
piecewise-linear of slopes (c0i , . . . , c

n
i ) such that for a

production level between kq̄ and (k + 1)q̄, the marginal
cost is cki
ci is unknown, but we have a probability distribution
fi(ci) on it

The nodes are connected by edges

When a quantity hi,j of electricity is sent from node i to
node j we loose, ri,jh

2
i,j in the process

Objective for the operator (ISO): To produce enough
electricity to meet demand while minimizing the total cost

The Setting

♣
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The Standard Allocation
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Optimization problem

Problem

minimize
(q,h)

n∑
i=1

N∑
j=1

qji c
j
i

subject to ∀i ∈ I :

N∑
j=1

qji +
∑

i′∈V (i)

hi′,i − hi,i′ −
h2i,i′ + h2i′,i

2
ri,i′ ≥ di

∀(i, i′) ∈ E : hi,i′ ≥ 0

∀i ∈ I, j ∈ J : qji ≥ 0

∀i ∈ I, j ∈ J : qji ≤ q̄.
(1)
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Fixed-Point

Fi(λi, λ−i) = di +
∑

i′∈V (i)

λi′ − λi
ri,i′(λi + λi′)

+
(λi′ − λi)2

2ri,i′(λi + λi′)2
. (2)

Ki(λi) =


[k − 1, k]q̄ if λi = ci,k

kq̄ if λi ∈]ci,k, ci,k+1[, k 6= N

Nq̄ if λi ∈ λi ∈]ci,N , c̄[,

(3)

Lemma

For any i ∈ I and any λ−i ∈ [mini c
1
i ,maxi c

N
i ]n−1, Λi(λ−i) is

the unique solution of

Fi(Λi(λ−i), λ−i) ∈ Ki(Λi). (4)
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Algorithms

Theorem

The sequence (Λk(cN1 ...c
N
n ))k converges to the solution of the

dual.
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Regularity

We considere the subset S of C at which at the same time at
some nodes, the multiplicator is equal to the marginal cost and
the production is a multiple of q̄ (i.e. stuck in an angle):

S = {c ∈ Cn, qi(c) = jq̄ and λi(c) = cj′ (5)

for some i ∈ I, j ∈ J, j′ ∈ {j, j + 1}}. (6)

The set S corresponds to the point of transition between the
two possibilities defined by the first order condition.

Theorem

The function q is C∞ on Cn\S.
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Some definition

The expected profit of an agent writes

Ui(ci, c
′
i) = E−iui = Xi(x, c

′
i)−

∑
j∈[1..N ]

cjiQ
j
i (c
′
i).

with

Qj
i (q, ci) = E−i min((qi(ci, c−i)−jq̄)+, q̄) and Xi(x, ci) = E−ixi(ci, c−i)

We denote

f̃ ij(ci, t) =


fi(c

−j
i ,cji )

fi(c
−j
i ,t)

if fi(c
−j
i , t) 6= 0

0 else
and Ki

j(c
−j
i , t) =

∫ t

0

f̃ ij(ci, t)dc
j
i .
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The Optimization Problem (P1)

Problem

minimize
(q,x,h)

∑
i∈I

Exi(c)

subject to

qi(c) +
∑

i′∈V (i)

hi′,i(c)− hi,i′(c)−
h2i,i′(c) + h2i′,i(c)

2
ri,i′ ≥ di

hi,i′(c) ≥ 0

Ui(ci, ci) ≥ Ui(ci, c
′
i)

Ui(ci, ci) ≥ 0.
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P2

Problem

minimize
(q,x,h)

∑
i∈I

Exi(c)

subject to.

qi(c) +
∑

i′∈V (i)

hi′,i(c)− hi,i′(c)−
h2i,i′(c) + h2i′,i(c)

2
ri,i′ ≥ di

hi,i′(c) ≥ 0

Vi(c
1, .., cj−1, t1, c

j+1.., cN )− Vi(c1, .., cj−1, t2, cj+1.., cN ) =∫ t2

t1

Qj
i (c

1, .., cj−1, s, cj+1.., cN )ds

(c− c′).(Q(c)−Q(c′)) ≤ 0
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P3

Problem

minimize
(q,x,h)

E
∑
i∈I

∑
j∈J

qji (ci, c−i)(c
j
i +Kj

i (c−ji , cji ))

subject to

qi(c) +
∑

i′∈V (i)

hi′,i(c)− hi,i′(c)−
h2i,i′(c) + h2i′,i(c)

2
ri,i′ ≥ di

hi,i′(c) ≥ 0.

xi(c) =

N∑
j=1

(cji +Kj
i (c−ji , cji ))q

j
i (c)

20 / 23



Result

Theorem

Problems 1, 2 and 3 have the same solution.
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Discussion

Stability

Benchmark algorithm

Structure of the auction equilibrium
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We presented a framework for the design of
wholesale electricity market as well as tools to
compare it with a standard auction setting.

Many related aspects are currently under study.

Conclusion

♣
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