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Motivation

m Many countries are undertaking changes in their electricity
market regulation.

m Previous works show how regulation mechanisms allow the
producers to charge significantly more than their marginal
prices.

m Question raised: What could be done about this ?
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The Two Agent Problem
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A simple auction

® On one hand two electricity producers (AKA agents a; and
az) have a marginal production cost ¢; and co respectively.

m On the other hand, a central operator (AKA principal)
need to by two units of electricity.

m Agent ¢ = 1..2 bids a marginal price b;.
m The principal chose the lowest bid.

m Nash equilibrium in pur strategy and complete information
for symmetric agents: bid ¢, earn 0.
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What if we put some frictions in the model ?

a1 a2

When a quantity h of electricity is sent from node 1 to node 2
we loose h? in the process.

The principal solves

minir}llize C1q1 + C2q2
q7

subject to:

%—m+h4zgmﬁuﬂ+dmm:13
qi,hiEOfOr’L'ZLQ
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Some already known facts

Allocation solution

1 (z—vy 2
F = — —

Then

F(ci,c—)
i@, e—) = 4 @
0

if F(ci,c—i) >0 and F(c_;,¢;) >0
if F(c_i,¢;) <0 and F(c,c—;) >0
if F(ci,c—i) <0 and F(c—i,¢;) >0

Market power from the quadratic externalities

* c
b* = 1—2dr
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Mechanism Design

Revelation Principle

Theorem (Revelation Principle)

To any Bayesian Nash equilibrium of a game of incomplete
information, there exists a payoff-equivalent direct revelation
mechanism that has an equilibrium where the players truthfully
report their types.

m Idea: change the principal behaviors

m Tool: the revelation principle

m So: we perform an optimization over the truthful direct
mechanism (see general case later)
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Mechanism Design

Solution

Proposition (Under some hypothesis on f)

If in a mechanism (g, iz,i:) the assignment function (q, il) solves

min/ Z gi(c)[e; + Fi(ci)]f(c)dc

q;h L i=to fi(ci)

subject to the allocations constraints and the payment function
T satisfies

Cq

Zi(c) = gi(c)e; + /qi(s,c_i)ds

Cq

then (g, ﬁ,ic) 18 an optimal mechanism.

7/23



Benchmark

Equilibrium gains, a=2
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Strategies

Bids for a=2
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General Setting
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Example of Network

a
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The Setting

m At each node i:

m There is a fixed demand for electricity d;
m There is an electricity producer whose production cost is

piecewise-linear of slopes (¢, ...,c") such that for a
production level between kg and (k + 1)g, the marginal
cost is cF

i
m ¢; is unknown, but we have a probability distribution
fi(e;) on it
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The Setting \

m At each node i:

m There is a fixed demand for electricity d;

m There is an electricity producer whose production cost is
piecewise-linear of slopes (¢, ...,c") such that for a
production level between kg and (k + 1)g, the marginal
cost is cF

m ¢; is unknown, but we have a probability distribution

fi(e;) on it ﬂ

m The nodes are connected by edges

= When a quantity h; ; of electricity is sent from node ¢ to
node j we loose, Ti,jh%’j in the process

m Objective for the operator (ISO): To produce enough
electricity to meet demand while minimizing the total cost
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The Standard Allocation
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Optimization problem

mmzmzze Z Z qf cf

(q,h) =1 =
_ ‘ hiy +h
subject to Vi eI : Z q + Z hir i — hi i — %n,i/ > d;

Jj=1 '€V (3)
V(i,i') € E:hiy >0
Viel,jeJ:q¢ >0
ViEI,jGJ:qggq_.
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Fixed-Point

Air = Ai (i = N)?
Fi(NiyA—i) = di + : + : 5 (2)
eV (i) T’L,Z'()\l + Az’) 2T1,Z/(>‘l + >\7,’)
[k —1, k](j it \;, = Cik
Ki(\i) = { kg if \i €leik, cipr1l,k #N (3)

N(j it e\ G]CLN,E[,

Lemma

For any i € I and any A\~* € [min; ¢}, max; ¢V]" 1, Aj(A_;) is
the unique solution of

Fi(Ai(A—i), Ai) € Ki(Ag). (4)
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Algorithms

The sequence (A*(cY...cN)) converges to the solution of the
dual.
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Regularity

We considere the subset S of C at which at the same time at
some nodes, the multiplicator is equal to the marginal cost and
the production is a multiple of g (i.e. stuck in an angle):

S ={ce C" qic) = jq and Xi(c) = ¢jr (5)
for some i € I,j € J, 5/ € {j,7+1}}. (6)

The set S corresponds to the point of transition between the
two possibilities defined by the first order condition.

Theorem
The function q is C*° on C™\S.
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The Mechanism Design
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Some definition

The expected profit of an agent writes

Ui(ei,¢) =B qui = Xy, ) — Y dQi(c)).
JE[L..N]
with
Ql(g,¢;) =E_;min((g;(ci,c—i)—j@) ", q) and X;(z,¢;) = E_jm;(ci, c—i)

We denote

. D) it ) £ 0
f;(cz’t) = fi(c;],t) 1 fl(cz ) ) #
0 else

¢
and K;»(ci_],t):/o fi(ci, t)de].
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The Optimization Problem (P1)

E
ngir%zez x;(c
subject to
h2 L(c) + hz/ (c
Z hzz - 1,1() 1,1()2 l’l()ri,i’zdi
eV (7)
hiq(c) >0

Ui(ci, ¢i) > Ui(es, )
Ui(Ci, Ci) Z 0.
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P2

E
mZZi@Zz@Z $Z
subject to.
h2 -y (C) + h2/ (C)
EZV()hZZ - zz() Zﬂ 9 L Ti,i’zdi
i’ 2
hm'/(c) >0
Vilels o 7t I ) = V(e T, LY =
t2
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P3

mzmmzzeEZZq ¢, C C’7 +sz( CZ))

(g,2,h)

i€l jeJ
subject to
2 2

W)+ Y huale) — (o) - T g,

7EV(i)
hiin(c) = 0.

N

zi(e) =Y (el + K (i, e])d] (¢)

=1
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Result

Problems 1, 2 and 8 have the same solution.
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Discussion

m Stability
m Benchmark algorithm

m Structure of the auction equilibrium

22 /23



Conclusion

m We presented a framework for the design of
wholesale electricity market as well as tools to
compare it with a standard auction setting.

m Many related aspects are currently under study.
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