An accretive operator approach for stochastic games with ergodic payoff

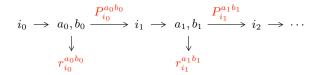
Antoine Hochart

INRIA and CMAP Ecole polytechnique

Journées SMAI-MODE 2016 Toulouse – 25 mars 2016 Definition:

- Finite state space: $\mathbf{S} = \{1, \dots, n\}.$
- Action spaces: A_i (Player MIN) and B_i (Player MAX) in state i.
- ▶ Transition payment from Player MIN to Player MAX: $\mathbf{r}_{i}^{ab} \in \mathbb{R}$ with $i \in S$, $a \in A_i$, $b \in B_i$.
- ▶ Transition probability: $\mathbf{P}_{\mathbf{i}}^{\mathbf{ab}} = (P_{ij}^{ab})_{1 \leqslant j \leqslant n} \in \Delta(S).$

Play:



Value in finite horizon:

- ▶ Play: $(i_{\ell}, a_{\ell}, b_{\ell})_{\ell \in \mathbb{N}}$ with $i_{\ell} \in S, a_{\ell} \in A_{i_{\ell}}, b_{\ell} \in B_{i_{\ell}}$.
- Payoff of the k-stage game with initial state i, strategy σ for Player MIN and strategy τ for Player MAX:

$$J_i^k(\sigma,\tau) = \mathbb{E}_{i,\sigma,\tau} \left[\sum_{\ell=0}^{k-1} r_{i_\ell}^{a_\ell b_\ell} \right]$$

Value of the k-stage game with initial state i:

$$v_i^k = \inf_{\sigma} \sup_{\tau} J_i^k(\sigma, \tau) = \sup_{\tau} \inf_{\sigma} J_i^k(\sigma, \tau) \ .$$

Assumption

The value v_i^k exists for all $i \in S$ and $k \in \mathbb{N}$.

Mean payoff vector:

$$\chi := \lim_{k \to \infty} \frac{v^k}{k}$$
 .

Existence of the mean payoff:

- recursive games (*Everett*, '57);
- absorbing games (Kohlberg, '74);
- finite stochastic games (Bewley & Kohlberg, '76);
- ▶ games with incomplete information (Aumann & Maschler, '95);
- Markov chain games with incomplete information (Renault, '06).

Counterexamples:

- stochastic game (Vigeral, '13);
- zero-sum repeated game with symmetric information (Ziliotto, '13).

Question

When is the mean payoff independent of the initial state?

A. Hochart

Shapley operator $T : \mathbb{R}^S \to \mathbb{R}^S$,

$$T_{i}(x) = \inf_{a \in A_{i}} \sup_{b \in B_{i}} \left(r_{i}^{ab} + \sum_{j=1}^{n} P_{ij}^{ab} x_{j} \right) \left(= \sup_{b \in B_{i}} \inf_{a \in A_{i}} \left(r_{i}^{ab} + \sum_{j=1}^{n} P_{ij}^{ab} x_{j} \right) \right) \quad , \quad i \in S$$

Dynamic programming principle: $v_i^0 = 0$, $v_i^{k+1} = T_i(v^k)$.

$$\implies \chi := \lim_{k \to \infty} \frac{v^k}{k} = \lim_{k \to \infty} \frac{T^k(0)}{k}$$

Constant-mean-payoff problem related to the solvability of the ergodic equation:

$$T(u) = \lambda e + u , \quad \lambda \in \mathbb{R}, \ u \in \mathbb{R}^S .$$
 (Erg)

- If the ergodic equation is solvable, then the ergodic constant λ gives the mean payoff for every initial state: $\chi_i = \lambda$, $\forall i \in S$. (*u* bias vector.)
- When T is polyhedral (finite action spaces), the ergodic equation is solvable iff the mean payoff vector χ is constant.

Definition (ergodic game)

We say that a zero-sum repeated game with Shapley operator T is **ergodic** when the ergodic equation is solvable for all **perturbed operators** g + T with $g \in \mathbb{R}^S$ (i.e., perturbed games in which the payments in state i is increased by g_i).

Proposition (zero-player case)

A finite Markov chain (zero-player game) with transition matrix $P \in \mathbb{R}^{n \times n}$ is ergodic iff for every $g \in \mathbb{R}^n$, there exist $\lambda \in \mathbb{R}$ and $u \in \mathbb{R}^n$ such that $g + Pu = \lambda e + u$.

THEOREM 1

A stochastic game with **finite state space** is ergodic iff all the slice spaces are bounded in the Hilbert's seminorm.

Definition

- ▶ slice space: $S^{\beta}_{\alpha}(T) := \{x \in \mathbb{R}^S \mid \alpha e + x \leqslant T(x) \leqslant \beta e + x\}$
- Hilbert's seminorm: $||x||_{\mathsf{H}} := \max_i x_i \min_i x_i$

Sufficient condition:

Theorem (corollary of Gaubert & Gunawardena, TAMS '04)

If all the slice spaces $S^{\beta}_{\alpha}(T)$ are bounded in the Hilbert's seminorm, then $\forall g \in \mathbb{R}^n, \ \exists (\lambda, u) \in \mathbb{R} \times \mathbb{R}^n, \ g + T(u) = \lambda e + u.$

Algorithmic aspects:

Corollary (Akian, Gaubert & H., CDC '15)

Ergodicity of a game can be checked in time $O(2^{|S|}poly(|A|, |B|))$ by a deterministic Turing machine with oracles Ω^{\pm} .

- Oracles Ω^{\pm} based on $\lim_{\rho \to \pm \infty} T_i(\rho e_J)$.
- **coNP-hard** problem, but fixed-parameter tractable.

From ergodic equation to fixed-point problem

Let $T : \mathbb{R}^S \to \mathbb{R}^S$ be a Shapley operator.

- T is order-preserving: $x \leqslant y \implies T(x) \leqslant T(y)$.
- ▶ T is additively homogeneous: $T(x + \lambda e) = T(x) + \lambda e$, $\forall \lambda \in \mathbb{R}$.
- ► T is nonexpansive w.r.t. the Hilbert's seminorm:

 $||T(x) - T(y)||_{\mathsf{H}} \leq ||x - y||_{\mathsf{H}}$.

Let $\mathbb{TR}^S := \mathbb{R}^S / \mathbb{R}e$ be the "additive projective space" (the set of $x + \mathbb{R}e$).

- $(\mathbb{TR}^S, \|\cdot\|_H)$ is a finite-dimensional normed space.
- ▶ T can be quotiented into a map $[T] : \mathbb{TR}^S \to \mathbb{TR}^S$ nonexpansive w.r.t. $\| \cdot \|_H$.

Lemma

T has a (unique up to an additive constant) bias vector, iff [T] has a (unique) fixed point.

Let $(\mathcal{X}, \|\cdot\|)$ be a finite-dimensional normed space, and $(\mathcal{X}^*, \|\cdot\|^*)$ its dual.

Definition

• The (normalized) duality mapping on \mathcal{X} is the set-valued map

$$J: \mathcal{X} \rightrightarrows \mathcal{X}^*, \ x \mapsto \{x^* \in \mathcal{X}^* \mid \|x^*\|^* = \|x\|, \ \langle x, x^* \rangle = \|x\|^2\} .$$

• A set-valued map $A : \mathcal{X} \rightrightarrows \mathcal{X}$ is accretive if

$$\forall x, y \in \mathcal{X}, u \in A(x), v \in A(y), \quad \exists x^* \in J(x-y), \quad \langle u-v, x^* \rangle \geqslant 0 \ .$$

- A is *m*-accretive if it is accretive and rg(Id + λA) = X for some λ > 0.
- A is coaccretive if A^{-1} is accretive.

Lemma

If
$$T: \mathcal{X} \to \mathcal{X}$$
 is nonexpansive, then $A := \mathrm{Id} - T$ is *m*-accretive.

Proposition

Let \mathcal{X} be a finite-dimensional normed space.

Let $A : \mathcal{X} \rightrightarrows \mathcal{X}$ be a **coaccretive** map.

Then, A is locally bounded at each point in the interior of $dom(A) := \{x \in \mathcal{X} \mid A(x) \neq \emptyset\}.$

Theorem (Fitzpatrick, Hess, Kato, '72, see also Browder, '68)

Let \mathcal{X} be a Banach space such that \mathcal{X}' is uniformly convex. Let $A : \mathcal{X} \rightrightarrows \mathcal{X}$ be an **accretive** map. For every point in the interior of its domain, A is locally bounded.

Theorem (surjectivity condition for accretive operators)

Let $A : \mathcal{X} \rightrightarrows \mathcal{X}$ be an accretive map.

$$\operatorname{rg}(A) := \bigcup_{x \in \mathcal{X}} A(x) = \mathcal{X} \implies S_{\gamma} := \{x \in \mathcal{X} \mid \operatorname{dist}(A(x), 0) \leqslant \gamma\} \text{ bounded } \forall \gamma \ge 0$$

Theorem (Kirk & Schöneberg, '80)

Let $A : \mathcal{X} \rightrightarrows \mathcal{X}$ be an *m*-accretive map.

 $\mathcal{S}_{\gamma} := \{ x \in \mathcal{X} \mid \operatorname{dist}(A(x), 0) \leqslant \gamma \} \text{ bounded } \forall \gamma \geqslant 0 \quad \Longrightarrow \quad \operatorname{rg}(A) = \mathcal{X} \ .$

Corollary

Let $T : \mathcal{X} \to \mathcal{X}$ be a nonexpansive operator. T.F.A.E. :

- 1. for every vector $g \in \mathcal{X}$, the operator g + T has at least one fixed point;
- 2. for every $\gamma > 0$, the set $S_{\gamma}(T) = \{x \in \mathcal{X} \mid ||x T(x)|| \leq \gamma\}$ is bounded.

proof.

Let
$$A = \operatorname{Id} - T$$
: $\operatorname{rg}(A) = \mathcal{X} \iff \forall g \in \mathcal{X}, \ \exists x \in \mathcal{X}, \ g + T(x) = x$

THEOREM 2

If a stochastic game with **finite state space** is ergodic, then the bias vector is unique (up to an additive constant) for a generic perturbation vector $g \in \mathbb{R}^S$ of the Shapley operator.

- ▶ In the **policy iteration algorithm**, uniqueness is important to avoid cycling.
- In one-player games (optimal control problems) with continuous time (Aubry-Mather theory, weak-KAM theory) the result is already known (Rifford).

Let $T: \mathcal{X} \to \mathcal{X}$ be a nonexpansive operator, and $A = \mathrm{Id} - T$. Let $\mathrm{FP}: \mathcal{X} \rightrightarrows \mathcal{X}, \ g \mapsto \{x \in \mathcal{X} \mid g + T(x) = x\}$ be the fixed point map. Note that $\mathrm{FP} = A^{-1}$: $x \in \mathrm{FP}(g) \iff g = (\mathrm{Id} - T)(x) = A(x)$.

Assume that $dom(FP) = \mathcal{X}$ (i.e., that g + T has a fixed point for every $g \in \mathcal{X}$).

Theorem

- ▶ FP has compact values and is upper semicontinuous.
- ▶ FP is continuous at point $g \in \mathcal{X} \iff FP(g)$ is a singleton.

Theorem (generic continuity, see Aubin and Frankowska, '09)

Let $F : \mathcal{Y} \rightrightarrows \mathcal{Z}$, with \mathcal{Y}, \mathcal{Z} complete metric spaces and \mathcal{Z} separable. If F is u.s.c., then it is continuous on a residual of \mathcal{Y} (countable intersection of dense open subsets).

Corollary

The fixed point of g + T is unique for every g in a residual of \mathcal{X} .

Theorem

Let $T: \mathbb{R}^S \to \mathbb{R}^S$ be the Shapley operator of a stochastic game with finite state space. T.F.A.E. :

- 1. the ergodic equation $g + T(u) = \lambda e + u$ has a solution for all $g \in \mathbb{R}^S$;
- 2. all the subsets $S_{\gamma}(T) := \{x \in \mathbb{R}^S \mid ||x T(x)||_{\mathsf{H}} \leq \gamma\}$ are bounded in the Hilbert's seminorm;
- 3. all the slice spaces $S_{\alpha}^{\beta}(T) := \{x \in \mathbb{R}^{S} \mid \alpha e \leqslant T(x) x \leqslant \beta e\}$ are bounded in the Hilbert's seminorm.

Moreover, if one of the properties holds, then the set of perturbation vectors $g \in \mathbb{R}^S$ for which g + T has a unique bias (up to an additive constant) is a residual of \mathbb{R}^S .

- Can we extend these results to the case of games with infinite state space \differential games (Hamilton-Jacobi-Isaacs PDE)?
- Can we describe the set of bias vectors when the ergodic equation is solvable?

Thank you