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Zero-sum stochastic games – model

Definition:

I Finite state space: S = {1, . . . , n}.
I Action spaces: Ai (Player MIN) and Bi (Player MAX) in state i.

I Transition payment from Player MIN to Player MAX: rabi ∈ R
with i ∈ S, a ∈ Ai, b ∈ Bi.

I Transition probability: Pab
i = (P abij )16j6n ∈ ∆(S).

Play:

i0 a0, b0
P a0b0i0

ra0b0i0

i1 a1, b1
P a1b1i1

ra1b1i1

i2 . . .
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Zero-sum stochastic games – value

Value in finite horizon:

I Play: (i`, a`, b`)`∈N with i` ∈ S, a` ∈ Ai` , b` ∈ Bi` .

I Payoff of the k-stage game with initial state i, strategy σ for Player MIN and
strategy τ for Player MAX:

Jki (σ, τ) = Ei,σ,τ

[
k−1∑
`=0

r
a`b`
i`

]
.

I Value of the k-stage game with initial state i:

vki = inf
σ

sup
τ
Jki (σ, τ) = sup

τ
inf
σ
Jki (σ, τ) .

Assumption

The value vki exists for all i ∈ S and k ∈ N.
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Zero-sum stochastic games – ergodic payoff

Mean payoff vector:

χ := lim
k→∞

vk

k
.

Existence of the mean payoff:

I recursive games (Everett, ’57);

I absorbing games (Kohlberg, ’74);

I finite stochastic games (Bewley & Kohlberg, ’76);

I games with incomplete information (Aumann & Maschler, ’95);

I Markov chain games with incomplete information (Renault, ’06).

Counterexamples:

I stochastic game (Vigeral, ’13);

I zero-sum repeated game with symmetric information (Ziliotto, ’13).

Question

When is the mean payoff independent of the initial state?
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Operator approach

Shapley operator T : RS → RS ,

Ti(x) = inf
a∈Ai

sup
b∈Bi

(
rabi +

n∑
j=1

P abij xj
)(

= sup
b∈Bi

inf
a∈Ai

(
rabi +

n∑
j=1

P abij xj
))

, i ∈ S .

Dynamic programming principle: v0i = 0 , vk+1
i = Ti(v

k) .

=⇒ χ := lim
k→∞

vk

k
= lim
k→∞

T k(0)

k

Constant-mean-payoff problem related to the solvability of the ergodic equation:

T (u) = λe+ u , λ ∈ R, u ∈ RS . (Erg)

I If the ergodic equation is solvable, then the ergodic constant λ gives the mean
payoff for every initial state: χi = λ, ∀i ∈ S. (u bias vector.)

I When T is polyhedral (finite action spaces), the ergodic equation is solvable iff the
mean payoff vector χ is constant.
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Solvability of the ergodic equation

Definition (ergodic game)

We say that a zero-sum repeated game with Shapley operator T is ergodic when the
ergodic equation is solvable for all perturbed operators g + T with g ∈ RS (i.e.,
perturbed games in which the payments in state i is increased by gi).

Proposition (zero-player case)

A finite Markov chain (zero-player game) with transition matrix P ∈ Rn×n is ergodic iff
for every g ∈ Rn, there exist λ ∈ R and u ∈ Rn such that g + Pu = λe+ u.

THEOREM 1

A stochastic game with finite state space is ergodic iff all the slice spaces are bounded
in the Hilbert’s seminorm.

Definition

I slice space: Sβα(T ) := {x ∈ RS | αe+ x 6 T (x) 6 βe+ x}
I Hilbert’s seminorm: ‖x‖H := maxi xi −mini xi
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Ergodicity conditions for zero-sum repeated games

Sufficient condition:

Theorem (corollary of Gaubert & Gunawardena, TAMS ’04)

If all the slice spaces Sβα(T ) are bounded in the Hilbert’s seminorm, then
∀g ∈ Rn, ∃(λ, u) ∈ R× Rn, g + T (u) = λe+ u.

Algorithmic aspects:

Corollary (Akian, Gaubert & H., CDC ’15)

Ergodicity of a game can be checked in time O(2|S|poly(|A|, |B|)) by a deterministic
Turing machine with oracles Ω±.

I Oracles Ω± based on limρ→±∞ Ti(ρeJ).

I coNP-hard problem, but fixed-parameter tractable.
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From ergodic equation to fixed-point problem

Let T : RS → RS be a Shapley operator.

I T is order-preserving: x 6 y =⇒ T (x) 6 T (y) .

I T is additively homogeneous: T (x+ λe) = T (x) + λe , ∀λ ∈ R .

I T is nonexpansive w.r.t. the Hilbert’s seminorm:

‖T (x)− T (y)‖H 6 ‖x− y‖H .

Let TRS := RS/Re be the “additive projective space” (the set of x+ Re).

I (TRS , ‖ · ‖H) is a finite-dimensional normed space.

I T can be quotiented into a map [T ] : TRS → TRS nonexpansive w.r.t. ‖ · ‖H .

Lemma

T has a (unique up to an additive constant) bias vector, iff [T ] has a (unique) fixed point.
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Accretive operators

Let (X , ‖ · ‖) be a finite-dimensional normed space, and (X ∗, ‖ · ‖∗) its dual.

Definition

I The (normalized) duality mapping on X is the set-valued map

J : X ⇒ X ∗, x 7→ {x∗ ∈ X ∗ | ‖x∗‖∗ = ‖x‖, 〈x, x∗〉 = ‖x‖2} .

I A set-valued map A : X ⇒ X is accretive if

∀x, y ∈ X , u ∈ A(x), v ∈ A(y), ∃x∗ ∈ J(x− y), 〈u− v, x∗〉 > 0 .

I A is m-accretive if it is accretive and rg(Id + λA) = X for some λ > 0.

I A is coaccretive if A−1 is accretive.

Lemma

If T : X → X is nonexpansive, then A := Id− T is m-accretive.
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Local boundedness of coaccretive maps

Proposition

Let X be a finite-dimensional normed space.
Let A : X ⇒ X be a coaccretive map.
Then, A is locally bounded at each point in the interior of dom(A) := {x ∈ X | A(x) 6= ∅}.

Theorem (Fitzpatrick, Hess, Kato, ’72, see also Browder, ’68)

Let X be a Banach space such that X ′ is uniformly convex.
Let A : X ⇒ X be an accretive map.
For every point in the interior of its domain, A is locally bounded.
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Existence stability of fixed points

Theorem (surjectivity condition for accretive operators)

Let A : X ⇒ X be an accretive map.

rg(A) :=
⋃
x∈X

A(x) = X =⇒ Sγ := {x ∈ X | dist(A(x), 0) 6 γ} bounded ∀γ > 0 .

Theorem (Kirk & Schöneberg, ’80)

Let A : X ⇒ X be an m-accretive map.

Sγ := {x ∈ X | dist(A(x), 0) 6 γ} bounded ∀γ > 0 =⇒ rg(A) = X .

Corollary

Let T : X → X be a nonexpansive operator. T.F.A.E. :

1. for every vector g ∈ X , the operator g + T has at least one fixed point;

2. for every γ > 0, the set Sγ(T ) = {x ∈ X | ‖x− T (x)‖ 6 γ} is bounded.

proof.

Let A = Id− T : rg(A) = X ⇐⇒ ∀g ∈ X , ∃x ∈ X , g + T (x) = x .
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Uniqueness of the bias vector (up to an additive constant)

THEOREM 2

If a stochastic game with finite state space is ergodic, then the bias vector is unique (up
to an additive constant) for a generic perturbation vector g ∈ RS of the Shapley operator.

I In the policy iteration algorithm, uniqueness is important to avoid cycling.

I In one-player games (optimal control problems) with continuous time
(Aubry-Mather theory, weak-KAM theory) the result is already known (Rifford).
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Generic uniqueness of fixed points

Let T : X → X be a nonexpansive operator, and A = Id− T .
Let FP : X ⇒ X , g 7→ {x ∈ X | g + T (x) = x} be the fixed point map.
Note that FP = A−1: x ∈ FP(g) ⇐⇒ g = (Id− T )(x) = A(x).

Assume that dom(FP) = X (i.e., that g + T has a fixed point for every g ∈ X ).

Theorem
I FP has compact values and is upper semicontinuous.

I FP is continuous at point g ∈ X ⇐⇒ FP(g) is a singleton.

Theorem (generic continuity, see Aubin and Frankowska, ’09)

Let F : Y ⇒ Z, with Y,Z complete metric spaces and Z separable. If F is u.s.c., then
it is continuous on a residual of Y (countable intersection of dense open subsets).

Corollary

The fixed point of g + T is unique for every g in a residual of X .
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Summary of main result

Theorem

Let T : RS → RS be the Shapley operator of a stochastic game with finite state space.
T.F.A.E. :

1. the ergodic equation g + T (u) = λe+ u has a solution for all g ∈ RS ;

2. all the subsets Sγ(T ) := {x ∈ RS | ‖x− T (x)‖H 6 γ} are bounded in the Hilbert’s
seminorm;

3. all the slice spaces Sβα(T ) := {x ∈ RS | αe 6 T (x)− x 6 βe} are bounded in the
Hilbert’s seminorm.

Moreover, if one of the properties holds, then the set of perturbation vectors g ∈ RS for
which g + T has a unique bias (up to an additive constant) is a residual of RS .
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Perspectives

I Can we extend these results to the case of games with infinite state space
\differential games (Hamilton-Jacobi-Isaacs PDE)?

I Can we describe the set of bias vectors when the ergodic equation is solvable?
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Thank you
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