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Problem statement

We look to recover an unknown signal x ∈ CT , T being a regular grid in Rd , given noisy
observations

yτ = xτ + σξτ , τ ∈ T , (1)

where ξ is the (complex-valued) white noise, ξτ ∼ N (0, 12 I2).

Optimal recovery:
Assume we want to estimate the value xt of the signal at t ∈ T .

Theorem [Ibragimov, Khas’minski, 1984, Donoho, 1994, etc, reform.]

Let X ⊂ CT be a convex compact and centrally symmetric set. Then for a variety of
loss functions, the minimax, over x ∈ X , risk of recovering xt from noisy observations
(1) is attained, within factor 1.2..., by a linear in y estimate, readily given along with its
risk, by the solution to convex optimization problem [...]
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Optimal recovery

In other words, if we are given a convex compact (and symmetric) set X of signals (e.g.,
set of signals satisfying some regularity constraints) then a properly selected linear
estimator

x∗t =
∑
τ∈T

ϕ∗τyτ , ϕ∗ ∈ CT ,

is (quasi-) optimal on the class of all possible estimators.

• Computing the linear minimax estimator is “easy” for well-structured sets of
signals (e.g., sets which can be described using CVX).

Question:
Suppose that we do not know the class X . Is it possible to “mimic” the oracle linear
estimator ϕ∗, i.e. to construct an adaptive estimator (which only use observations) of
comparable accuracy?

3 / 27



Optimal recovery

In other words, if we are given a convex compact (and symmetric) set X of signals (e.g.,
set of signals satisfying some regularity constraints) then a properly selected linear
estimator

x∗t =
∑
τ∈T

ϕ∗τyτ , ϕ∗ ∈ CT ,

is (quasi-) optimal on the class of all possible estimators.

• Computing the linear minimax estimator is “easy” for well-structured sets of
signals (e.g., sets which can be described using CVX).

Question:
Suppose that we do not know the class X . Is it possible to “mimic” the oracle linear
estimator ϕ∗, i.e. to construct an adaptive estimator (which only use observations) of
comparable accuracy?

3 / 27



Problem reformulation

For the sake of simplicity, consider 1d situation, where the signal to recover x ∈ CZ, and
we are given n = 4T + 1 observations

yτ = xτ + σξτ , −2T < τ < 2T , (2)

Our objective may be either

• filtering – estimation of x2T (or x−2T ),

• interpolation – estimation of xt , −2T < t < 2T (e.g., x0)

• prediction – estimation of x2T+k , (or x−2T−k) for some k ∈ N+.

We assume that the oracle estimator ϕ∗ has bounded support – can be represented as a
“linear filter” of length ≤ T + 1. For instance, when estimating xt , −T/2 ≤ t ≤ T/2,

x∗t =

T/2∑
τ=−T/2

ϕ∗τyt−τ = [ϕ∗ ∗ y ]t .

4 / 27



Basic assumption

For the sake of simplicity, let us assume that we want to estimate x0.
We say that x ∈ C T

−T if x vanishes outside the interval [−T ,T ].

We say that signal x is simple at t = 0 if there exists a (oracle) filter ϕ∗ ∈ C T/2
−T/2,

satisfying

• (small variance condition) ‖ϕ∗‖2 ≤ ρ√
T
,

• (small bias condition) for some θ > 0 and all − 3T
2
≤ τ ≤ 3T

2
,

|xτ − [ϕ∗ ∗ x ]τ | ≤
θσρ√
T
.

More generally, for x which is simple at t, there exists ϕ∗ of length T and a
neighborhood of size O(T ) of t where ϕ∗ ∗ x reproduces x with “small bias”.

As a result, a simple at t = 0 signal x can be “well recovered” from y unformly over
− 3T

2
≤ τ ≤ 3T

2
:

E|xτ − [ϕ∗ ∗ (x + σξ)]τ |2 = σ2E|[ϕ∗ ∗ ξ]τ |2 + |xτ − [ϕ∗ ∗ x ]τ |2

=
σ2ρ2

T
+
θ2σ2ρ2

T
= O(1)

σ2ρ2

T
.
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Classical example

Consider the problem of estimating a smooth function f : [0, 1]→ R from noisy
observations

yi = f (i/n) + σξi , i = 1, ..., n, ξ ∼ N (0, In).

The classical kernel estimator f̂t of f (t) with bandwidth h is

f̂ (t) =
n∑

i=1

1

2nh
K

(
t − i/n

h

)
yi ,

and K(t) : [−1, 1]→ R is a kernel such that∫ 1

−1

K(t)dt = 1,

∫ 1

−1

K 2(t)dt = ρ2 <∞.

Let xτ = f (τ/n), τ = 1, ..., n, and let T = [2nh]. Then, the kernel estimator above can
be rewritten for T/2 + 1 ≤ t ≤ n − T/2 as

x̂t = f̂ (t/n) = (φ ∗ y)t , φτ =
1

T
K

(
τ

T/2

)
, τ = −T/2, ...,T/2.

Note that the `2-norm of φ satisfies ‖φ‖2 ∼ ρ/
√
T , and if the kernel K and the

bandwidth h are “properly chosen”, the bias of the estimator is also O(1)ρ/
√
T .
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Less classical example

Suppose that f : [0, 1]→ C can be locally, when x − h ≤ x ≤ x + h, well-approximated
by an exponential polynomial:

p(x) =
K∑

k=1

ckx
rk e iωk x

with fixed frequencies ωk ∈ C.
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An exponential polynomial, K = 2

Note that for any T = 2nh > 2K there exists a kernel K∗h , depending on the frequencies
ωk , of the norm OK (1)/

√
T which exactly reproduces p.

7 / 27



Less classical examples

When applied in the problem of estimation of f , kernel K∗h , with properly chosen h,
recovers f (x) with the “parametric rate” [J., Nemirovski, 2009, 2013]

OK (1)
σ2

nh
= OK (1)

σ2

T
.

Furthermore,

• The class of simple signals is quite rich, it contains, for instance, signals xτ ∈ C
which are close to solutions to homogeneous difference equations:

K∑
k=1

wkxτ−k = 0, w ∈ CK .

• This class allows for a calculus: linear combinations, modulations, liftings, “tensor
products” of simple signals are also simple.

• More examples in multi-dimensional case [J., Nemirovski, 2009] ...
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Problem reformulation

Question:
under these conditions, is it possible to design an “adaptive estimation” x̂0 = [ϕ̂ ∗ y ]0 of
x0 which only relies upon observations y ∈ C 2T

−2T , and such that[
E|x̂0 − x0|2

]1/2
� σρ√

T
?

Theorem 1 [lower bound].
For any ρ ≥ 1, positive σ and T ∈ N large enough, one can point out a family FT

ρ of
real signals on [−2T , 2T ] such that

• for each signal s ∈ FT
ρ there exists a filter ϕ∗ ∈ R T/2

−T/2 with ‖ϕ∗‖2 = ρ√
T+1

, such
that

max
−3T/2≤τ≤3T/2

[
E((ϕ∗ ∗ y)τ − xτ )2

]1/2
=

σρ√
T + 1

;

• there is c0 > 0 such that for any estimate x̂0 of x0 from observations (1) it holds

sup
x∈FT

ρ

[
E(x̂0 − x0)2

]1/2
≥ c0

σρ√
T + 1

ρ
√

log(T + 1) .
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Main result

Theorem 2 [upper bound].
Assume that x is simple at zero with known parameters ρ and θ.
Then there is an estimate x̂0 (y) of x0 such that[

E |x̂0(y)− x0|2
]1/2 ≤ c σρ√

T

[
θ +

√
log(T + 1)

]
ρ2.

Furthermore, one has with probability 1− ε,

|x̂0(y)− x0| ≤ c σρ√
T

[
θ +

√
log
(
T+1
ε

)]
ρ2.
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Constructing the adaptive filter 1

Naive approach – Empirical Risk minimization:
For a signal x ∈ CZ, L ∈ N+, and 1 ≤ p ≤ ∞, let us denote

‖x‖L,p =
∥∥∥[x ] L

−L

∥∥∥
p
.

Define ϕ̂ as an optimal solution to

min
ϕ∈CT+1

{
‖y − ϕ ∗ y‖23T/2,2 : ‖ϕ‖2 ≤

ρ√
T

}
.

Note that ϕ∗ is feasible, so that

‖y − ϕ̂ ∗ y‖23T/2,2 ≤ ‖y − ϕ∗ ∗ y‖23T/2,2 = OP(1) + σ2‖ξ‖23T/2,2.

Therefore,

‖x − ϕ̂ ∗ y‖23T/2,2 = ‖y − ϕ̂ ∗ y‖23T/2,2 − σ
2 ‖ξ‖23T/2,2 − 2σ〈ξ, x − ϕ̂ ∗ y〉3T/2

= OP(1) + 2σ2〈ξ, ϕ̂ ∗ ξ〉3T/2︸ ︷︷ ︸
OP (
√

T )

− 2σ〈ξ, x − ϕ̂ ∗ x〉3T/2.
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Constructing the adaptive filter 2

For x ∈ CZ, let FT (x) be the Discrete Fourier Transform (DFT) of [x ] T
−T .

We denote ‖x‖∗T ,p = ‖FT x‖p.

Lemma
Suppose that ϕ∗ ∈ C T/2

−T/2 satisfies ‖ϕ∗‖2 ≤ ρ√
T

. Let also

ψ∗ := (ϕ∗ ∗ ϕ∗) ∈ C T
−T .

Then ψ∗ it holds

• ‖ψ∗‖2 = ‖ψ∗‖∗T ,2 ≤ ‖ψ
∗‖∗T ,1 ≤

√
2ρ2√
T

;

• moreover, if x is simple at 0 then for τ : −T ≤ τ ≤ T , |xτ − [ψ∗ ∗ x ]τ | ≤ 2σθρ2√
T
.
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Constructing the adaptive filter 2

Let ψ̂ ∈ C T
−T be an optimal solution of the following problem:

min
ψ∈C T

−T

{
‖y − ψ ∗ y‖T ,2 : ‖ψ‖∗T ,1 ≤

√
2ρ2√
T

}
. (P1)

Then, as before, by the feasibility of ψ∗

‖y − ψ̂ ∗ y‖T ,2 ≤ ‖y − ψ∗ ∗ y‖T ,2.

• We have now better control of the cross-term 〈ξ, ψ̂ ∗ ξ〉T
(“almost” the max of a convex function over a convex polyhedron):

〈ξ, ψ̂ ∗ ξ〉T ≤ max
‖ψ‖∗1≤%

2
√

2/T

〈ξ, ψ ∗ ξ〉T = OP (logT ) .

• ...

• We finally get [
E‖x − [ψ̂ ∗ y ]‖2T ,2

]1/2
≤ Cσρ(1 + θ)

[
ρ
√

logT
]

and [
E
∣∣x0 − [ψ̂ ∗ y ]0

∣∣2]1/2 ≤ Cσρ(1 + θ)√
T

[
ρ2
√

logT
]
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A variant

Let ψ̂ be an optimal solution to

min
ψ∈C2T+1

{
‖y − ψ ∗ y‖∗T ,∞ : ‖ψ‖∗T ,1 ≤

√
2ρ2√
T
.

}
(P2)

Theorem 3 [upper bound]
Consider the estimation x̂0 (y) =

[
ψ̂ ∗ y

]
0

of x0. Then

E
[
|x0(y)− x̂0|2

]1/2
≤ c

σρ√
T

[
%3
√

log[T ] + θ
]
,

and, with probability 1− ε,

|x̂0(y)− x0| ≤ c
σρ√
T

[
%3
√

log[T/ε] + θ
]
.
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A summary

• Let (xτ ) admit, for some T , the estimate x∗τ = [ϕ∗ ∗ y ]τ with “bandwidth” T

(i.e., with ϕ∗ ∈ CT/2
−T/2) such that

max
τ :|τ−t|≤3T/2

E
{
|xτ − x∗τ |

2
}
≤ κ2 :=

σ2µ2

T + 1
(3)

for some known µ ≥ 1.

• Our objective is, assuming that T and µ are known, to recover xt from
observations [y ]t+2T

t−2T nearly as well as if we were using our hypothetic estimate x∗t .

• By (3), |ϕ∗|2 ≤ µ√
T+1

and x is simple.

When applying Theorem 2 or 3 with ρ = µ, θ = 1, we conclude that the MSE of
recovery x̂t = [ψ̂ ∗ y ]t is bounded, respectively, by

O(1)µ2
√

log(T )κ︸ ︷︷ ︸
when using (P1)

or O(1)µ3
√

log(T )κ.︸ ︷︷ ︸
when using (P2)
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Adaptation to ρ and T

In “practical applications” values of the parameter ρ and of the bandwidth T are
unknown.

• The algorithms can be modified to be adaptive with respect to ρ. For in
instance,(P2) can be replaced with the “norm minimization” problem

min
ψ,r

{
r :
‖y − ψ ∗ y‖∗T ,∞ ≤ 2σ(1 + r)

√
log[T + 1],

‖ψ‖∗T ,1 ≤ r(2T + 1)−1/2.

}
(P ′2)

Instead of constrained problems, we can consider their penalized versions. For
instance, (P1) can be replaced with

min
ψ

{
‖y − ψ ∗ y‖2T ,2 + κσ2

√
2T + 1‖ψ‖∗T ,1

}
. (P1”)

with penalty κ = κ0log(T ).
...

• To choose a proper T we can use Lepski’s algorithm, which amounts to compare
estimators computed for various values of T .
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Operational summary

When applying the proposed approach to “practical” recovery of a signal or an image

• For each point t of the grid we need

1. choose a set of bandwidths {T0 = 0, T1 = 1, T2 = 2, ...,TK = n},
2. for each bandwidth Tk compute an approximate solution ψ̂Tk ,t to (P1)

(or (P2), (P
′
2),...)

3. compute estimations x̂t [Tk ] = [ψ̂Tk ,t ∗ y ]t and aggregate them using
Lepski’s algorithm.

• To reduce the numerical cost, instead of proceeding point-wise, one can use
block-wise update of filters...

One needs to solve repeatedly problems (P1) of the kind (or alike)

Opt = min
ψ∈C T

−T

{
f (ψ) = ‖y − y ∗ ψ‖∗T ,p : ‖ψ‖∗T ,1 ≤ r

}
, r > 0, p ∈ {2,∞}. (P∗)
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Choosing the optimization tool 1

Note that (P∗) can be rewritten as a bilinear saddle-point problem: indeed, its objective,

f (ψ) = max
u∈C2T+1

{〈u,FT (y − y ∗ ψ)〉, ‖u‖q ≤ 1} ,

where 1
p

+ 1
q

= 1.

When denoting z = FT (ψ),

Opt = min
ψ∈C2T+1

max
u∈C2T+1

{〈u,Az〉+ 〈u, b〉 : ‖u‖q ≤ 1, ‖z‖1 ≤ r} , (P∗)

where q ∈ {1, 2}, b = FT (y), and A is as follows:

A z = FT

[
y ∗ F−1

T (z)
]

= FT

[
F−1
2T

{
F2T [0T ; y ; 0T ] . ∗ F2T

[
02T ;F−1

T (z); 02T

]}]
(here [x ; 0T ] stands for the concatenation with zero vector of length T and .∗ is the
Hadamard element-wise product).
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Choosing the optimization tool 2

• (P∗) is a bilinear saddle-point problem with domains which are balls of either `2- or
`2/`1-norm.

• Problems should be solved to (relatively) low accuracy – a solution ẑ of accuracy

ε(ẑ) := f (ẑ)−Opt ≤ 1
4Opt

will be largely sufficient.

• Objective gradients can be computed in O(n logn) operations using the FFT.

Under the premise, proximal First Order algorithms appear to be methods of choice.
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Proximal algorithms for bilinear saddle-point optimization

• 1/ε complexity estimates (or even 1/
√
ε under “favorable circumstances”).

• Accuracy certificates are available “at no cost”.

• Favorable geometry of the problem domain – simple O(n) proximal computation.

• Fully profit from fast gradient computation – O(n logn) cost per iteration.

We have a choice of at least 2 efficient techniques:

• Extra-gradient algorithms for saddle-point problems (Mirror-Prox [Nemirovski,
2003], Dual Extrapolation [Nesterov, 2003], etc)

• Smoothing [Nesterov, 2003]:
replace f (z) = max‖u‖q≤1〈u,Az〉 with its “Nesterov’s smoothing”:

fγ(z) = max
‖u‖q≤1

{〈u,Az〉+ γϑ(u)} ,

where ϑ is 1-strongly convex with respect to ‖ · ‖q-norm; then apply to fγ
Nesterov’s accelerated algorithm for smooth optimization.
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Proximal algorithms for bilinear saddle-point optimization

• 1/ε complexity estimates (or even 1/
√
ε under “favorable circumstances”).

• Accuracy certificates are available “at no cost”.

• Favorable geometry of the problem domain – simple O(n) proximal computation.

• Fully profit from fast gradient computation – O(n logn) cost per iteration.
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Comparing the contenders: theory

Nesterov accelerated algorithm:

• allows for easily implementable Euclidean and non-Euclidean prox and adaptive
stepsize strategies;

• receives a “special mention” in the case of `2-norm minimization: instead of
smoothing one can minimize the squared norm.
In this case, accelerate algorithm exhibits 1/

√
ε complexity for ε� Opt.

• allows for the easily implementable warm start: the theoretical accuracy estimate
depends on the initial distance to the optimum (though not on the sub-optimality
of the initial solution).

• However, smoothing implementation (in its “basic form”) requires to fix from the
start the regularisation parameter γ � 1/ε, what results in curbed convergence
rates.

Extra-gradient algorithms:

• allows for easily implementable Euclidean and non-Euclidean prox and adaptive
stepsize strategies;

• can be seen as “online adjustment” of the regularization γ.

• On the other hand, no simple “warm start” strategy is available in this case.
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Comparing the contenders: experiments
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Mirror Prox algorithm
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`2-norm minimization. Filter length T = 200, modulated 2nd order polynomial.
Left plot – absolute error, right plot – relative error as a function of iteration count.
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Simulation experiment: adaptive recovery
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Comparison with Atomic Soft Thresholding (AST), a.k.a. spectral Lasso
by [Bhaskar et al., 2013, Tang et al., 2013]

Modulated 4th order polynomial, SNR=1. AST over-sampling factor κ = 4. 23 / 27



Simulation experiment: adaptive recovery
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Modulated 4nd order polynomial, SNR=1. AST over-sampling factor κ = 4.
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Simulation experiments: sum of harmonic oscillations
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Sum of harmonic oscillations: zoomed image
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Simulation experiments: Brodatz picture

True signal Observations

MP recovery Lasso recovery

Brodatz D75 picture, SNR=1. AST over-sampling factor κ = 4.
MISEAdapt=3.2748e+03, MISEAST=3.2514e+03. 27 / 27


