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Problem statement

We look to recover an unknown signal x € C7, T being a regular grid in RY, given noisy
observations

Ve =X +0d&, TET, (1)
where ¢ is the (complex-valued) white noise, &; ~ N(0, %12).
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Problem statement

We look to recover an unknown signal x € C7, T being a regular grid in RY, given noisy
observations

Ve =X +0d&, TET, (1)
where ¢ is the (complex-valued) white noise, &; ~ N(0, %12).

Optimal recovery:
Assume we want to estimate the value x; of the signal at t € 7.

Theorem [Ibragimov, Khas'minski, 1984, Donoho, 1994, etc, reform.]

Let X C C” be a convex compact and centrally symmetric set. Then for a variety of
loss functions, the minimax, over x € X, risk of recovering x; from noisy observations
(1) is attained, within factor 1.2..., by a linear in y estimate, readily given along with its
risk, by the solution to convex optimization problem [...]
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Optimal recovery

In other words, if we are given a convex compact (and symmetric) set X of signals (e.g.,
set of signals satisfying some regularity constraints) then a properly selected linear
estimator
Xt)k = Z @i}’n SD* € CT?
TET

is (quasi-) optimal on the class of all possible estimators.

® Computing the linear minimax estimator is “easy” for well-structured sets of
signals (e.g., sets which can be described using CVX).



Optimal recovery

In other words, if we are given a convex compact (and symmetric) set X of signals (e.g.,

set of signals satisfying some regularity constraints) then a properly selected linear
estimator
Xt)k = Z @i}’n SD* € CT?
TET
is (quasi-) optimal on the class of all possible estimators.

® Computing the linear minimax estimator is “easy” for well-structured sets of
signals (e.g., sets which can be described using CVX).

Question:

Suppose that we do not know the class X. Is it possible to “mimic” the oracle linear
estimator ™, i.e. to construct an adaptive estimator (which only use observations) of
comparable accuracy?
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Problem reformulation

For the sake of simplicity, consider 1d situation, where the signal to recover x € CZ, and
we are given n = 4T + 1 observations
Yr =X +0&, —2T <71 <2T, (2)

Our objective may be either

e filtering — estimation of xo1 (or x_27),

® interpolation — estimation of x¢, —2T < t < 2T (e.g., x0)

® prediction — estimation of xo74«, (or x_27—_k) for some k € Ny.
We assume that the oracle estimator ¢* has bounded support — can be represented as a
“linear filter” of length < T + 1. For instance, when estimating x;, —T/2 <t < T/2,

T/2
XK= ) @iy =[p" xyle

T=—T/2



Basic assumption

For the sake of simplicity, let us assume that we want to estimate xo.
We say that x € C_T; if x vanishes outside the interval [T, T].

We say that signal x is simple at t = 0 if there exists a (oracle) filter p* € C TT//22,

satisfying

® (small variance condition) [|¢™ |2 < %,
e (small bias condition) for some 6 > 0 and all =3 <7 < 3T,
Oop
* x| <
i R G o

More generally, for x which is simple at t, there exists p* of length T and a
neighborhood of size O(T) of t where ¢* % x reproduces x with “small bias”.
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Basic assumption

For the sake of simplicity, let us assume that we want to estimate xo.
We say that x € C_T; if x vanishes outside the interval [T, T].

We say that signal x is simple at t = 0 if there exists a (oracle) filter p* € C TT//ZZ,

satisfying

® (small variance condition) [|¢™ |2 < %,

IN

e (small bias condition) for some 6 >0 and all —3f <7 < 3T

Ixr [¢*X]|<ﬁ

More generally, for x which is simple at t, there exists p* of length T and a
neighborhood of size O(T) of t where ¢* % x reproduces x with “small bias”.

As a result, a simple at t = 0 signal x can be “well recovered” from y unformly over
3T 3T.
5 ST
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Classical example
Consider the problem of estimating a smooth function f : [0,1] — R from noisy
observations
yi=f(i/n)+0&, i=1,..n, &~N(O,L).
The classical kernel estimator f, of f(t) with bandwidth h is

(1) = Zzh (til/n>yﬁ

and K(t): [-1,1] — R is a kernel such that

1 1
/ K(t)dt =1, / K3(t)dt = p* < 0.
—1

-1

Let x, = f(7/n), 7=1,...,n, and let T = [2nh]. Then, the kernel estimator above can
be rewritten for T/2+1<t<n-—T/2as

—F(t/n) = (65 y)e, 6 = = (T/z) Cr— T2 T2
Note that the £>-norm of ¢ satisfies ||¢[|2 ~ p/V/T, and if the kernel K and the

bandwidth h are “properly chosen”, the bias of the estimator is also O(1)p/V/'T.

6
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Less classical example

Suppose that f : [0,1] — C can be locally, when x — h < x < x + h, well-approximated
by an exponential polynomial:

K .
p(X) _ Z Cerk elwkx
k=1

with fixed frequencies wy € C.

-40

-60

An exponential polynomial, K =2

Note that for any T = 2nh > 2K there exists a kernel K}, depending on the frequencies
wi, of the norm Ok(1)/v/T which exactly reproduces p.
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Less classical examples

When applied in the problem of estimation of f, kernel K}, with properly chosen h,
recovers f(x) with the “parametric rate” [J., Nemirovski, 2009, 2013]

0'2 0'2
Ox(1) 2 = Ox(1) %

Furthermore,

® The class of simple signals is quite rich, it contains, for instance, signals x, € C
which are close to solutions to homogeneous difference equations:

K
Z Wkxr—k =0, w e ck.
k=1

® This class allows for a calculus: linear combinations, modulations, liftings, “tensor
products” of simple signals are also simple.

® More examples in multi-dimensional case [J., Nemirovski, 2009] ...



Problem reformulation

Question:

under these conditions, is it possible to design an “adaptive estimation” Xo = [@ * y]o of
xo which only relies upon observations y € C %)+, and such that

1/2
[E|§o—xo\2] = 20 4



Problem reformulation

Question:

under these conditions, is it possible to design an “adaptive estimation” Xo = [@ * y]o of
xo which only relies upon observations y € C %)+, and such that

1/2
[E|fo—xo\2] = 20 4

Theorem 1 [lower bound].

For any p > 1, positive o and T € N large enough, one can point out a family }'pT of
real signals on [-2T, 2T] such that

e for each signal s € F,] there exists a filter p* € RjT//zz with ||¢*|2 = \/%, such
that "
E * T — X1 2] = O-ipy
73T/£~2€1X§3T/2 [ ((¢7#y)r =x) VT +1

® there is ¢ > 0 such that for any estimate Xy of xo from observations (1) it holds

E(A )2 1/2 S op 1 (T+ 1)
sup [ Xo — Xo } > co—————= py/log .
XG}"; \% T+1



Main result

Theorem 2 [upper bound].

Assume that x is simple at zero with known parameters p and 6.
Then there is an estimate Xp (y) of xo such that

[ElRo(y) — %] < e [0+ iog(T+D)] 7~

Furthermore, one has with probability 1 — ¢,

Xo(y) = x| < C%{“ log(%)} o
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Constructing the adaptive filter 1

Naive approach — Empirical Risk minimization:
For a signal x € CEt Le Ni, and 1 < p < o0, let us denote

Il = || -

Define @ as an optimal solution to

! jen P
i, (b= oo e < 22}
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Constructing the adaptive filter 1

Naive approach — Empirical Risk minimization:
For a signal x € CEt Le Ni, and 1 < p < o0, let us denote

Il = || -

Define @ as an optimal solution to

. 2 4
min — * : < %
min {ly =0yl na ol < L=}
Note that ¢* is feasible, so that
lly — @*Y||§T/2,2 <y - ©" *Y||§T/2,2 = Op(1) + UZHfH%T/z,z-
Therefore,

~ 2 ~ 2 2|1 ¢12 .
l[x — @ * )/||3T/2,2 =ly-® *Y||3T/2,2 -0 ||§||37—/2,2 —20(§,x— P *xy)sT)2
= Op(1) +20°(6, 3 * E)31/2 — 20(&, x — @ * X)37/2-
—_—

Op(VT)
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Constructing the adaptive filter 2

For x € CZ, let Fr(x) be the Discrete Fourier Transform (DFT) of [x]_7.
We denote [|x[|T , = ||Frx||p.

Lemma
Suppose that ¢* € (CjT//22 satisfies || |l2 < = Letalso
P = (p" x ") eC T
Then 9™ it holds
* * || * 5 | 2
A A [

2
® moreover, if x is simple at O thenfor 7: —T <7< T, |xr —[¢" *xx].| < 2(7477 .
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Constructing the adaptive filter 2

Let 7,2 € C_"; be an optimal solution of the following problem:

. . V2P
i, {ly = syl ol < 2. (P)
Then, as before, by the feasibility of ¢*

ly —¥xyllre <ly—9¥" *yl|re.

® We have now better control of the cross-term (£, * &) 7
("almost” the max of a convex function over a convex polyhedron):

W < , — Op (logT).
(R IES me?;% (VRSN p (logT)

13 /27



Constructing the adaptive filter 2

Let 7,2 € C_"; be an optimal solution of the following problem:

| ol < V2P
i, {ly = syl ol < 2. (P)

Then, as before, by the feasibility of ¢*
ly = xylra<ly—v"*ylra.

® We have now better control of the cross-term (£, * &) 7
("almost” the max of a convex function over a convex polyhedron):

W < , — Op (logT).
(R IES mez;% (VRSN p (logT)

e We finally get

[Ellx— B3] < Cona +6) [pr/loeT]
and

o= 5+ b < S0 [ 7]
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A variant

Let {p\ be an optimal solution to

. . . 202
min {Ilyfw*y\lr,oo: l¥ll7, < %} (P2)

¢€C2T+1

Theorem 3 [upper bound]
Consider the estimation X (y) = [zZ* y] of xo. Then
0

oL/
E [\xo(y) — xo|2} < C% [gax/log[T] + 9] ,
and, with probability 1 — ¢,

Ro(y) — ol < c% [0 V108l T/e] + 6]
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A summary

® Let (x;) admit, for some T, the estimate x; = [¢" *y], with “bandwidth” T
(i.e., with " € CI/TZﬂ) such that
o2

R (3)

max
T:|T—t|<3T/2

for some known p > 1.

® Qur objective is, assuming that T and y are known, to recover x; from

observations [y]ifé? nearly as well as if we were using our hypothetic estimate x; .
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A summary

® Let (x;) admit, for some T, the estimate x; = [¢" *y], with “bandwidth” T
(i.e., with " € CI/TZﬂ) such that

. 02H2
R (3)

max
T:|T—t|<3T/2
for some known p > 1.

® Qur objective is, assuming that T and y are known, to recover x; from

observations [y]ifé? nearly as well as if we were using our hypothetic estimate x; .

® By (3), l¢"|2 < &5 and x is simple.

When applying Theorem 2 or 3 with p = 1, § = 1, we conclude that the MSE of
recovery X; = [¢) * y] is bounded, respectively, by

0(1)*/log(T)x or O(1)u*/log(T)k.

when using (P1) when using (P2)
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Adaptation to p and T

In “practical applications” values of the parameter p and of the bandwidth T are
unknown.

® The algorithms can be modified to be adaptive with respect to p. For in
instance,(P2) can be replaced with the “norm minimization” problem

min{r: Hy_Qp*YH’fF,oo§20(1+r)\/10g[7—+1]7 } (P3)

wr [ll7x < r(2T +1)72

Instead of constrained problems, we can consider their penalized versions. For
instance, (P1) can be replaced with

min {[ly = & |7 , + 20" V2T + 171} (P")

with penalty s = sglog(T).
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Adaptation to p and T

In “practical applications” values of the parameter p and of the bandwidth T are
unknown.

® The algorithms can be modified to be adaptive with respect to p. For in
instance,(P2) can be replaced with the “norm minimization” problem

{r: I\y—¢*YI|?,oo§20(1+f)\/m7 } (PQ,)

[ll7x < r(2T +1)72

min
P,r

Instead of constrained problems, we can consider their penalized versions. For
instance, (P1) can be replaced with

min {[ly = & |7 , + 20" V2T + 171} (P")
with penalty s = sglog(T).

® To choose a proper T we can use Lepski's algorithm, which amounts to compare
estimators computed for various values of T.
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Operational summary

When applying the proposed approach to “practical” recovery of a signal or an image

® For each point t of the grid we need
1. choose a set of bandwidths {To =0, Ty =1, T, =2,..., Tx = n},

2. for each bandwidth Ty compute an approximate solution ¢, + to (P1)

(or (P2). (P2)....) ~
3. compute estimations X;[ Tx] = [¢T, ¢ * ¥]: and aggregate them using
Lepski's algorithm.

® To reduce the numerical cost, instead of proceeding point-wise, one can use
block-wise update of filters...
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Operational summary

When applying the proposed approach to “practical” recovery of a signal or an image

® For each point t of the grid we need
1. choose a set of bandwidths {To =0, Ty =1, T, =2,..., Tx = n},

2. for each bandwidth Ty compute an approximate solution ¢, + to (P1)

(or (P2). (P2)....) ~
3. compute estimations X;[ Tx] = [¢T, ¢ * ¥]: and aggregate them using
Lepski's algorithm.

® To reduce the numerical cost, instead of proceeding point-wise, one can use
block-wise update of filters...

One needs to solve repeatedly problems (P:) of the kind (or alike)

Opt = min, {f)=ly—y*ollTe: WlTa<ry, r>0,pe{200}  (P.)
-7
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Choosing the optimization tool 1

Note that (P.) can be rewritten as a bilinear saddle-point problem: indeed, its objective,

FW) = max {(u Friy =y« 0), lullg <1},

1,1 _
where st = 1.
When denoting z = Fr (1),

Opt=_min  max {{u.Az)+ (u.b): fuly <1 |zl <1},

where g € {1,2}, b= Fr(y), and A is as follows:

Az

(P-)

Frly«Fri(@)]

Fr [F;TI{FN [07;y;07]. % Far [OzT; Fri(2); OZT} H

(here [x; 07] stands for the concatenation with zero vector of length T and .x is the
Hadamard element-wise product).
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Choosing the optimization tool 2

e (P,) is a bilinear saddle-point problem with domains which are balls of either ¢>- or
0> /¢1-norm.

® Problems should be solved to (relatively) low accuracy — a solution Z of accuracy
€(2) := f(2) — Opt < ;Opt
will be largely sufficient.

® Objective gradients can be computed in O(nlogn) operations using the FFT.
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Choosing the optimization tool 2

e (P,) is a bilinear saddle-point problem with domains which are balls of either ¢>- or
0> /¢1-norm.

® Problems should be solved to (relatively) low accuracy — a solution Z of accuracy
€(2) := f(2) — Opt < ;Opt
will be largely sufficient.

® Objective gradients can be computed in O(nlogn) operations using the FFT.

Under the premise, proximal First Order algorithms appear to be methods of choice.
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Proximal algorithms for bilinear saddle-point optimization

1/e complexity estimates (or even 1/4/¢ under “favorable circumstances”).

® Accuracy certificates are available “at no cost”.

Favorable geometry of the problem domain — simple O(n) proximal computation.

Fully profit from fast gradient computation — O(nlogn) cost per iteration.
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Proximal algorithms for bilinear saddle-point optimization

1/e complexity estimates (or even 1/4/¢ under “favorable circumstances”).

® Accuracy certificates are available “at no cost”.

Favorable geometry of the problem domain — simple O(n) proximal computation.

Fully profit from fast gradient computation — O(nlogn) cost per iteration.

We have a choice of at least 2 efficient techniques:

e Extra-gradient algorithms for saddle-point problems (Mirror-Prox [Nemirovski,
2003], Dual Extrapolation [Nesterov, 2003], etc)

® Smoothing [Nesterov, 2003]:
replace f(z) = max,,<1{u, Az) with its “Nesterov's smoothing":

f(2) = max {(u, Az) +79(u)},

llullg<1

where ¥ is 1-strongly convex with respect to || - ||g-norm; then apply to £,
Nesterov's accelerated algorithm for smooth optimization.

20 /27



Comparing the contenders: theory

Nesterov accelerated algorithm:

® allows for easily implementable Euclidean and non-Euclidean prox and adaptive
stepsize strategies;

® receives a “special mention” in the case of /2-norm minimization: instead of
smoothing one can minimize the squared norm.
In this case, accelerate algorithm exhibits 1/1/e complexity for e < Opt.

® allows for the easily implementable warm start: the theoretical accuracy estimate
depends on the initial distance to the optimum (though not on the sub-optimality
of the initial solution).

® However, smoothing implementation (in its “basic form”) requires to fix from the
start the regularisation parameter v < 1/¢, what results in curbed convergence
rates.
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Comparing the contenders: theory

Nesterov accelerated algorithm:

allows for easily implementable Euclidean and non-Euclidean prox and adaptive
stepsize strategies;

receives a “special mention” in the case of />-norm minimization: instead of
smoothing one can minimize the squared norm.
In this case, accelerate algorithm exhibits 1/1/e complexity for e < Opt.

allows for the easily implementable warm start: the theoretical accuracy estimate
depends on the initial distance to the optimum (though not on the sub-optimality
of the initial solution).

However, smoothing implementation (in its “basic form™) requires to fix from the
start the regularisation parameter v < 1/¢, what results in curbed convergence
rates.

Extra-gradient algorithms:

allows for easily implementable Euclidean and non-Euclidean prox and adaptive
stepsize strategies;

can be seen as “online adjustment” of the regularization ~.

On the other hand, no simple “warm start” strategy is available in this case.

21/27



Comparing the contenders: experiments

SNR=0.5, optval=1.4771 SNR=0.5
T T T T

Mirror Prox algorithm
Fast Gradient algorithm

Mirror Prox algorithm
Fast Gradient algorithm

10 L !

- 102 - -
10t 102 10° 104 10t 102

f2-norm minimization. Filter length T = 200, modulated 2nd order polynomial.

Left plot — absolute error, right plot — relative error as a function of iteration count.
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Simulation experiment: adaptive recovery

Filtering recovery, MSE=2.539
T T T

[ 50 100 150 200 250 300 350 400

Lasso recovery, MSE=4.8538
T T T

3 1 1 1 1 1 1 s
0 50 100 150 200 250 300 350 400

Comparison with Atomic Soft Thresholding (AST), a.k.a. spectral Lasso
by [Bhaskar et al., 2013, Tang et al., 2013]
Modulated 4th order polynomial, SNR=1. AST over-sampling factor k = 4. 5 /.,



Simulation experiment: adaptive recovery

Filtering recovery, MSE=1.7754
T T T

Ground Truth
Observations |

Lasso recovery, MSE=3.9014
T T

Modulated 4nd order polynomial, SNR=L1.

AST over-sampling factor k = 4.
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Simulation experiments: sum of harmonic oscillations

Ground h

Filtering recovery, M:

Sum of 4 oscillations. AST over-sampling factor xk = 4.
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Sum of harmonic oscillations: zoomed image

Ground truth Observations
120
125

130

5 10 15 5 10 15

Filtering recovery,

MSE=8.99l2sso recovery, MSE=66.5866

120 120

125 125

130 130
5 10 15 5 10 15

Sum of 4 oscillations. AST over-sampling factor k = 4.
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Simulation experiments: Brodatz picture

True signal Observations

~

Brodatz D75 picture, SNR=1. AST over-sampling factor xk = 4.

MISE agapt=3.2748e+03, MISEas7=3.2514e+03.
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