Semidefinite hierarchies for polynomial optimization

CWI

Monique Laurent
Journées SMAI-MODE 2016, Toulouse

Semidefinite hierarchies for polynomial optimization

CWI

Monique Laurent

Journées SMAI-MODE 2016, Toulouse
Based on joint works with Etienne de Klerk (Tilburg), Zhao Sun (Montreal), Jean Lasserre, Roxana Hess (Toulouse), Pablo Parrilo (MIT)

Polynomial optimization

Minimize a polynomial function f over a region

$$
K=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}
$$

defined by polynomial inequalities

$$
\text { Compute: } f_{\min }=\min _{x \in K} f(x)
$$

This is a hard problem, even for simple sets K like

- the standard simplex

$$
\Delta_{n}=\left\{x \in \mathbb{R}^{n}: x_{1}, \ldots, x_{n} \geq 0, \sum_{l=1}^{n} x_{i}=1\right\}
$$

- the hypercube $Q_{n}=[0,1]^{n}$
- the unit sphere

$$
S^{n-1}=\left\{x \in \mathbb{R}^{n}: \sum_{i=1}^{n} x_{i}^{2}=1\right\}
$$

It captures hard combinatorial optimization problems like computing the stability number $\alpha(G)$ and Max-Cut.

Polynomial optimization formulations for $\alpha(G)$

- Optimization over the simplex:
[Motzkin-Straus 1965]

$$
\frac{1}{\alpha(G)}=\min x^{T}\left(I+A_{G}\right) x \text { s.t. } \sum_{v \in V} x_{v}=1, x_{v} \geq 0(v \in V)
$$

- Optimization over the hypercube:
[Park-Hong 2011]

$$
\alpha(G)=\max \sum_{u \in V} x_{u}-\sum_{u v \in E} x_{u} x_{v} \text { s.t. } x \in[0,1]^{n}
$$

- Optimization over the unit sphere:
[Nesterov 2003]

$$
\frac{2 \sqrt{2}}{3 \sqrt{3}} \sqrt{1-\frac{1}{\alpha(G)}}=\max 2 \sum_{i j \in \bar{G}} z_{i j} y_{i} y_{j} \text { s.t. }(y, z) \in S^{n+m-1}
$$

Lower bounds for polynomial optimization

To approximate:

$$
f_{\min }=\min _{x \in K} f(x), \quad \text { where } K=\left\{x: g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}
$$

use LP/SDP hierarchies

[Shor (1987), Nesterov (2000), Parrilo, Lasserre (2000-)]

- Express $f_{\min }=\sup \lambda$ s.t. $f(x)-\lambda \geq 0$ over K
- Replace nonnegativity by easier sufficient conditions

Lower bounds for polynomial optimization

To approximate:

$$
f_{\min }=\min _{x \in K} f(x), \quad \text { where } K=\left\{x: g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}
$$

use LP /SDP hierarchies

[Shor (1987), Nesterov (2000), Parrilo, Lasserre (2000-)]

- Express $f_{\text {min }}=\sup \lambda$ s.t. $f(x)-\lambda \geq 0$ over K
- Replace nonnegativity by easier sufficient conditions

Testing whether f is nonnegative is hard, but
testing whether f is a sum-of-squares (SoS): $f=\sum_{j} g_{j}^{2}$
can be done efficiently using semidefinite programming (SDP)

Lower bounds for polynomial optimization

$$
f_{\min }=\min _{x \in K} f(x), \quad \text { where } K=\left\{x: g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}
$$

- Express $f_{\min }=\sup \lambda$ s.t. $f(x)-\lambda \geq 0$ over K
- Replace nonnegativity by easier sufficient conditions:

Lower bounds for polynomial optimization

$$
f_{\min }=\min _{x \in K} f(x), \quad \text { where } K=\left\{x: g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}
$$

- Express $f_{\text {min }}=\sup \lambda$ s.t. $f(x)-\lambda \geq 0$ over K
- Replace nonnegativity by easier sufficient conditions:
(1) [LP: Handelman type] $f-\lambda=\sum_{\alpha \in \mathbb{N}^{m}} \lambda_{\alpha} \prod_{j=1}^{m} g_{j}^{\alpha_{j}}$, where $\lambda_{\alpha} \geq 0$

Lower bounds for polynomial optimization

$$
f_{\min }=\min _{x \in K} f(x), \quad \text { where } K=\left\{x: g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}
$$

- Express $f_{\min }=\sup \lambda$ s.t. $f(x)-\lambda \geq 0$ over K
- Replace nonnegativity by easier sufficient conditions:
(1) [LP: Handelman type] $f-\lambda=\sum_{\alpha \in \mathbb{N}^{m}} \lambda_{\alpha} \prod_{j=1}^{m} g_{j}^{\alpha_{j}}$, where $\lambda_{\alpha} \geq 0$
(2) [SoS: Schmüdgen type] $f-\lambda=\sum_{J \subseteq[m]} \sigma_{J} \prod_{j \in J} g_{j}$, where $\sigma_{J} \mathrm{SoS}$

Lower bounds for polynomial optimization

$$
f_{\min }=\min _{x \in K} f(x), \quad \text { where } K=\left\{x: g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}
$$

- Express $f_{\min }=\sup \lambda$ s.t. $f(x)-\lambda \geq 0$ over K
- Replace nonnegativity by easier sufficient conditions:
(1) [LP: Handelman type] $f-\lambda=\sum_{\alpha \in \mathbb{N}^{m}} \lambda_{\alpha} \prod_{j=1}^{m} g_{j}^{\alpha_{j}}$, where $\lambda_{\alpha} \geq 0$
(2) [SoS: Schmüdgen type] $f-\lambda=\sum_{J \subseteq[m]} \sigma_{J} \prod_{j \in J} g_{j}$, where σ_{J} SoS
(3) [SoS: Putinar type] $f-\lambda=\sigma_{0}+\sum_{j=1}^{m} \sigma_{j} g_{j}$, where σ_{j} SoS

Lower bounds for polynomial optimization

$$
f_{\min }=\min _{x \in K} f(x), \quad \text { where } K=\left\{x: g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}
$$

- Express $f_{\min }=\sup \lambda$ s.t. $f(x)-\lambda \geq 0$ over K
- Replace nonnegativity by easier sufficient conditions:
(1) [LP: Handelman type] $f-\lambda=\sum_{\alpha \in \mathbb{N}^{m}} \lambda_{\alpha} \prod_{j=1}^{m} g_{j}^{\alpha_{j}}$, where $\lambda_{\alpha} \geq 0$
(2) [SoS: Schmüdgen type] $f-\lambda=\sum_{J \subseteq[m]} \sigma_{J} \prod_{j \in J} g_{j}$, where σ_{J} SoS
(3) [SoS: Putinar type] $f-\lambda=\sigma_{0}+\sum_{j=1}^{m} \sigma_{j} g_{j}$, where σ_{j} SoS
- Get lower bounds $\underline{f}_{\text {lp }}^{(r)}, \underline{-}_{\text {soss }}^{(r)}, f_{\text {sosP }}^{(r)}$ for $f_{\min }$ by bounding degrees: $\operatorname{deg} g^{\alpha}, \operatorname{deg}\left(\sigma_{J} g^{J}\right), \operatorname{deg}\left(\sigma_{j} g_{j}\right) \leq r$.

Lower bounds for polynomial optimization

$$
f_{\min }=\min _{x \in K} f(x), \quad \text { where } K=\left\{x: g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}
$$

- Express $f_{\text {min }}=\sup \lambda$ s.t. $f(x)-\lambda \geq 0$ over K
- Replace nonnegativity by easier sufficient conditions:
(1) [LP: Handelman type] $f-\lambda=\sum_{\alpha \in \mathbb{N}^{m}} \lambda_{\alpha} \prod_{j=1}^{m} g_{j}^{\alpha_{j}}$, where $\lambda_{\alpha} \geq 0$
(2) [SoS: Schmüdgen type] $f-\lambda=\sum_{J \subseteq[m]} \sigma_{J} \prod_{j \in J} g_{j}$, where $\sigma_{J} \mathrm{SoS}$
(3) [SoS: Putinar type] $f-\lambda=\sigma_{0}+\sum_{j=1}^{m} \sigma_{j} g_{j}$, where σ_{j} SoS
- Get lower bounds $\underline{f}_{\text {lp }}^{(r)}, \underline{-}_{\text {soss }}^{(r)}, f_{\text {sosP }}^{(r)}$ for $f_{\min }$ by bounding degrees: $\operatorname{deg} g^{\alpha}, \operatorname{deg}\left(\sigma_{J} g^{J}\right), \operatorname{deg}\left(\sigma_{j} g_{j}\right) \leq r$. Clearly:

$$
\left\{\underline{f}_{\mathrm{lp}}^{(r)}, \underline{f}_{\mathrm{sosP}}^{(r)}\right\} \leq \underline{f}_{\mathrm{sos} S}^{(r)} \leq f_{\min }
$$

Representation results for positive polynomials

Theorem
Assume K is compact and f is strictly positive on K.

Representation results for positive polynomials

Theorem
Assume K is compact and f is strictly positive on K.
(1) [Krivine-Handelman] Assume K full-dimensional polytope (all g_{j} have degree 1). Then $f=\sum_{\alpha \in \mathbb{N}^{m}} \lambda_{\alpha} \prod_{j=1}^{m} g_{j}^{\alpha_{j}}$, where $\lambda_{\alpha} \geq 0$.

Representation results for positive polynomials

Theorem
Assume K is compact and f is strictly positive on K.
(1) [Krivine-Handelman] Assume K full-dimensional polytope (all g_{j} have degree 1). Then $f=\sum_{\alpha \in \mathbb{N}^{m}} \lambda_{\alpha} \prod_{j=1}^{m} g_{j}^{\alpha_{j}}$, where $\lambda_{\alpha} \geq 0$.
(2) [Schmüdgen 1991] Then $f=\sum_{J \subseteq[m]} \sigma_{J} \prod_{j \in J} g_{j}$, where σ_{J} SoS.

Representation results for positive polynomials

Theorem
Assume K is compact and f is strictly positive on K.
(1) [Krivine-Handelman] Assume K full-dimensional polytope (all g_{j} have degree 1). Then $f=\sum_{\alpha \in \mathbb{N}^{m}} \lambda_{\alpha} \prod_{j=1}^{m} g_{j}^{\alpha_{j}}$, where $\lambda_{\alpha} \geq 0$.
(2) [Schmüdgen 1991] Then $f=\sum_{J \subseteq[m]} \sigma_{J} \prod_{j \in J} g_{j}$, where σ_{J} SoS.
(3) [Putinar 1993] Assume $\left\{x: g_{j}(x) \geq 0\right\}$ compact for some j. Then $f=\sigma_{0}+\sum_{j=1}^{m} \sigma_{j} g_{j}$, where σ_{j} SoS.

Representation results for positive polynomials

Theorem
Assume K is compact and f is strictly positive on K.
(1) [Krivine-Handelman] Assume K full-dimensional polytope (all g_{j} have degree 1). Then $f=\sum_{\alpha \in \mathbb{N}^{m}} \lambda_{\alpha} \prod_{j=1}^{m} g_{j}^{\alpha_{j}}$, where $\lambda_{\alpha} \geq 0$.
(2) [Schmüdgen 1991] Then $f=\sum_{J \subseteq[m]} \sigma_{J} \prod_{j \in J} g_{j}$, where σ_{J} SoS.
(3) [Putinar 1993] Assume $\left\{x: g_{j}(x) \geq 0\right\}$ compact for some j. Then $f=\sigma_{0}+\sum_{j=1}^{m} \sigma_{j} g_{j}$, where σ_{j} SoS.

- Asymptotic convergence of the lower bounds to $f_{\text {min }}$. [Lasserre 01]

Representation results for positive polynomials

Theorem
Assume K is compact and f is strictly positive on K.
(1) [Krivine-Handelman] Assume K full-dimensional polytope (all g_{j} have degree 1). Then $f=\sum_{\alpha \in \mathbb{N}^{m}} \lambda_{\alpha} \prod_{j=1}^{m} g_{j}^{\alpha_{j}}$, where $\lambda_{\alpha} \geq 0$.
(2) [Schmüdgen 1991] Then $f=\sum_{J \subseteq[m]} \sigma_{J} \prod_{j \in J} g_{j}$, where σ_{J} SoS.
(3) [Putinar 1993] Assume $\left\{x: g_{j}(x) \geq 0\right\}$ compact for some j. Then $f=\sigma_{0}+\sum_{j=1}^{m} \sigma_{j} g_{j}$, where σ_{j} SoS.

- Asymptotic convergence of the lower bounds to $f_{\text {min }}$. [Lasserre 01]
- Finite convergence holds generically for SoS bounds.

Representation results for positive polynomials

Theorem
Assume K is compact and f is strictly positive on K.
(1) [Krivine-Handelman] Assume K full-dimensional polytope (all g_{j} have degree 1). Then $f=\sum_{\alpha \in \mathbb{N}^{m}} \lambda_{\alpha} \prod_{j=1}^{m} g_{j}^{\alpha_{j}}$, where $\lambda_{\alpha} \geq 0$.
(2) [Schmüdgen 1991] Then $f=\sum_{J \subseteq[m]} \sigma_{J} \prod_{j \in J} g_{j}$, where σ_{J} SoS.
(3) [Putinar 1993] Assume $\left\{x: g_{j}(x) \geq 0\right\}$ compact for some j. Then $f=\sigma_{0}+\sum_{j=1}^{m} \sigma_{j} g_{j}$, where σ_{j} SoS.

- Asymptotic convergence of the lower bounds to $f_{\text {min }}$. [Lasserre 01]
- Finite convergence holds generically for SoS bounds.
[Nie 14]
- What about the rate of convergence?

Rate of convergence of SoS lower bounds

Theorem
Assume $K \subseteq(-1,1)^{n}$. For $f=\sum_{\alpha} f_{\alpha} x^{\alpha}$, set $L_{f}=\max _{\alpha}\left|f_{\alpha}\right| \frac{\alpha \mid}{|\alpha| \mid}$.

- [Schweighofer 2004] Analysis of Schmüdgen type bounds: There exists a constant $c>0$ such that for any polynomial f of degree d:

$$
f_{\min }-\underline{f}_{\text {sosS }}^{(r)} \leq c d^{4} n^{2 d} L_{f} \frac{1}{\sqrt[c]{r}} \quad \text { for } r \geq c d^{c} n^{c d}
$$

Rate of convergence of SoS lower bounds

Theorem
Assume $K \subseteq(-1,1)^{n}$. For $f=\sum_{\alpha} f_{\alpha} x^{\alpha}$, set $L_{f}=\max _{\alpha}\left|f_{\alpha}\right| \frac{\alpha^{1}}{|\alpha| \mid}$.

- [Schweighofer 2004] Analysis of Schmüdgen type bounds: There exists a constant $c>0$ such that for any polynomial f of degree d:

$$
f_{\min }-\underline{f}_{\text {sosS }}^{(r)} \leq c d^{4} n^{2 d} L_{f} \frac{1}{\sqrt[c]{r}} \quad \text { for } r \geq c d^{c} n^{c d}
$$

- [Nie-Schweighofer 2007] Analysis of Putinar type bounds: There exists a constant $c^{\prime}>0$ such that for any polynomial f of degree d:

$$
f_{\min }-\underline{f}_{\text {sosp }}^{(r)} \leq 6 d^{3} n^{2 d} L_{f} \frac{1}{\sqrt[c^{\prime}]{\log \frac{r}{c^{\prime}}}} \quad \text { for } r \geq c^{\prime} \exp \left(\left(2 d^{2} n^{d}\right)^{c^{\prime}}\right)
$$

Rate of convergence of SoS lower bounds

Theorem
Assume $K \subseteq(-1,1)^{n}$. For $f=\sum_{\alpha} f_{\alpha} x^{\alpha}$, set $L_{f}=\max _{\alpha}\left|f_{\alpha}\right| \frac{\alpha^{1}}{|\alpha| \mid}$.

- [Schweighofer 2004] Analysis of Schmüdgen type bounds:

There exists a constant $c>0$ such that for any polynomial f of degree d:

$$
f_{\min }-\underline{f}_{\text {sosS }}^{(r)} \leq c d^{4} n^{2 d} L_{f} \frac{1}{\sqrt[c]{r}} \quad \text { for } r \geq c d^{c} n^{c d}
$$

- [Nie-Schweighofer 2007] Analysis of Putinar type bounds: There exists a constant $c^{\prime}>0$ such that for any polynomial f of degree d:

$$
f_{\min }-\underline{f}_{\text {sosP }}^{(r)} \leq 6 d^{3} n^{2 d} L_{f} \frac{1}{\sqrt[c^{\prime}]{\log \frac{r}{c^{\prime}}}} \quad \text { for } r \geq c^{\prime} \exp \left(\left(2 d^{2} n^{d}\right)^{c^{\prime}}\right)
$$

Better results for some simple sets K ?

Rate of convergence of SoS lower bounds

Theorem
Assume $K \subseteq(-1,1)^{n}$. For $f=\sum_{\alpha} f_{\alpha} x^{\alpha}$, set $L_{f}=\max _{\alpha}\left|f_{\alpha}\right| \frac{\alpha!}{|\alpha|!}$.

- [Schweighofer 2004] Analysis of Schmüdgen type bounds:

There exists a constant $c>0$ such that for any polynomial f of degree d:

$$
f_{\min }-\underline{f}_{\text {sosS }}^{(r)} \leq c d^{4} n^{2 d} L_{f} \frac{1}{\sqrt[c]{r}} \quad \text { for } r \geq c d^{c} n^{c d}
$$

- [Nie-Schweighofer 2007] Analysis of Putinar type bounds: There exists a constant $c^{\prime}>0$ such that for any polynomial f of degree d:

$$
f_{\min }-\underline{f}_{\text {sosP }}^{(r)} \leq 6 d^{3} n^{2 d} L_{f} \frac{1}{\sqrt[c^{\prime}]{\log \frac{r}{c^{\prime}}}} \quad \text { for } r \geq c^{\prime} \exp \left(\left(2 d^{2} n^{d}\right)^{c^{\prime}}\right)
$$

Better results for some simple sets K ?
Can choose $c=1$ for Schmüdgen type bounds for simplex \& cube.

Upper bounds for polynomial optimization

Upper bounds for polynomial optimization

- For simple sets $K=\Delta_{n}$ or Q_{n} : minimize f over the rational grid points with given denominator r.

Upper bounds for polynomial optimization

- For simple sets $K=\Delta_{n}$ or Q_{n} : minimize f over the rational grid points with given denominator r.
- For general compact sets K, use Lasserre idea:

$$
f_{\min }=\min _{x \in K} f(x)=\min _{\mu \text { probability measure on } K} \int_{K} f(x) \mu(d x)
$$

Upper bounds for polynomial optimization

- For simple sets $K=\Delta_{n}$ or Q_{n} : minimize f over the rational grid points with given denominator r.
- For general compact sets K, use Lasserre idea:

$$
f_{\min }=\min _{x \in K} f(x)=\min _{\mu \text { probability measure on } K} \int_{K} f(x) \mu(d x)
$$

and select suitable probability measures μ over K.

Upper bounds for polynomial optimization

- For simple sets $K=\Delta_{n}$ or Q_{n} : minimize f over the rational grid points with given denominator r.
- For general compact sets K, use Lasserre idea:

$$
f_{\min }=\min _{x \in K} f(x)=\min _{\mu \text { probability measure on } K} \int_{K} f(x) \mu(d x)
$$

and select suitable probability measures μ over K.
Theorem (Lasserre 2011)
For K compact one may use sum-of-squares density functions:

$$
f_{\min }=\inf \int_{K} f(x) h(x) d x \text { s.t. } h \text { SoS, } \int_{K} h(x) d x=1 \text {. }
$$

Upper bounds for polynomial optimization

- For simple sets $K=\Delta_{n}$ or Q_{n} : minimize f over the rational grid points with given denominator r.
- For general compact sets K, use Lasserre idea:

$$
f_{\min }=\min _{x \in K} f(x)=\min _{\mu \text { probability measure on } K} \int_{K} f(x) \mu(d x)
$$

and select suitable probability measures μ over K.
Theorem (Lasserre 2011)
For K compact one may use sum-of-squares density functions:

$$
f_{\min }=\inf \int_{K} f(x) h(x) d x \text { s.t. } \quad h \text { SoS, } \int_{K} h(x) d x=1
$$

Bounding degree: $\operatorname{deg}(h) \leq 2 r$, get upper bounds $\bar{f}_{\text {sos }}^{(r)}$ converging to $f_{\text {min }}$.
What about the rate of convergence?

Upper bounds for polynomial optimization

- For simple sets $K=\Delta_{n}$ or Q_{n} : minimize f over the rational grid points with given denominator r.
- For general compact sets K, use Lasserre idea:

$$
f_{\min }=\min _{x \in K} f(x)=\min _{\mu \text { probability measure on } K} \int_{K} f(x) \mu(d x)
$$

and select suitable probability measures μ over K.
Theorem (Lasserre 2011)
For K compact one may use sum-of-squares density functions:

$$
f_{\min }=\inf \int_{K} f(x) h(x) d x \text { s.t. } h \text { SoS, } \int_{K} h(x) d x=1
$$

Bounding degree: $\operatorname{deg}(h) \leq 2 r$, get upper bounds $\bar{f}_{\text {sos }}^{(r)}$ converging to $f_{\text {min }}$.
What about the rate of convergence?

This talk

Analysis of the rate of convergence:

- For the simplex Δ_{n} and the cube Q_{n} : regular grid upper bounds and the LP lower bounds.
- For K compact: SoS-density upper bounds.
- For the cube Q_{n} : other upper bounds (using other density functions).

Polynomial optimization OVER THE SIMPLEX

Upper bounds: For $r \geq 1$

$$
\begin{gathered}
\Delta_{n}(r)=\left\{x \in \Delta_{n}: r x \in \mathbb{N}^{n}\right\} \\
f_{\min , \Delta_{n}(r)}=\min _{x \in \Delta_{n}(r)} f(x)
\end{gathered}
$$

Example: $n=3$:

Upper bounds: For $r \geq 1$

$$
\begin{gathered}
\Delta_{n}(r)=\left\{x \in \Delta_{n}: r x \in \mathbb{N}^{n}\right\} \\
f_{\min , \Delta_{n}(r)}=\min _{x \in \Delta_{n}(r)} f(x)
\end{gathered}
$$

Example: $n=3$:

$$
r=3
$$

Let $f=\sum_{|\beta|=d} f_{\beta} x^{\beta}$ homogeneous of degree d.

Upper bounds:

$$
f_{\min } \leq f_{\min , \Delta_{n}(r)}=\min _{x \in \Delta_{n}(r)} f(x)
$$

Let $f=\sum_{|\beta|=d} f_{\beta} x^{\beta}$ homogeneous of degree d.

Upper bounds:

$$
f_{\min } \leq f_{\min , \Delta_{n}(r)}=\min _{x \in \Delta_{n}(r)} f(x)=\min _{\alpha \in \mathbb{N}^{n}:|\alpha|=r} f(\alpha / r)
$$

Let $f=\sum_{|\beta|=d} f_{\beta} x^{\beta}$ homogeneous of degree d.

Upper bounds:

$$
f_{\min } \leq f_{\min , \Delta_{n}(r)}=\min _{x \in \Delta_{n}(r)} f(x)=\min _{\alpha \in \mathbb{N}^{n}:|\alpha|=r} f(\alpha / r) \quad\left(=\sum_{|\beta|=d} f_{\beta} \frac{\alpha^{\beta}}{r^{d}}\right)
$$

Let $f=\sum_{|\beta|=d} f_{\beta} x^{\beta}$ homogeneous of degree d.

Upper bounds:

$$
f_{\min } \leq f_{\min , \Delta_{n}(r)}=\min _{x \in \Delta_{n}(r)} f(x)=\min _{\alpha \in \mathbb{N}^{n}:|\alpha|=r} f(\alpha / r) \quad\left(=\sum_{|\beta|=d} f_{\beta} \frac{\alpha^{\beta}}{r^{d}}\right)
$$

Lower bounds:

$$
f_{\min } \geq f_{-\mathrm{lp}}^{(r)}=\sup \lambda \text { s.t. } f(x)-\lambda=\underbrace{h(x)}_{\mathbb{R}_{+}[x] r}+\underbrace{u(x)\left(1-\sum_{i=1}^{n} x_{i}\right)}_{\mathbb{R}[x] r}
$$

Let $f=\sum_{|\beta|=d} f_{\beta} x^{\beta}$ homogeneous of degree d.
Upper bounds:

$$
f_{\min } \leq f_{\min , \Delta_{n}(r)}=\min _{x \in \Delta_{n}(r)} f(x)=\min _{\alpha \in \mathbb{N}^{n}:|\alpha|=r} f(\alpha / r) \quad\left(=\sum_{|\beta|=d} f_{\beta} \frac{\alpha^{\beta}}{r^{d}}\right)
$$

Lower bounds:

$$
\begin{gathered}
f_{\min } \geq \underline{f}_{-\mathrm{lp}}^{(r)}=\sup \lambda \text { s.t. } f(x)-\lambda=\underbrace{h(x)}_{\left.\mathbb{R}_{+}[x]\right]_{r}}+\underbrace{u(x)\left(1-\sum_{i=1}^{n} x_{i}\right)}_{\mathbb{R}[x]_{r}} \\
=\min _{\alpha \in \mathbb{N}^{n}:|\alpha|=r} \sum_{|\beta|=d} f_{\beta} \frac{\alpha^{\underline{\beta}}}{r^{\underline{d}}} .
\end{gathered}
$$

$$
\text { where } r^{\underline{d}}=r(r-1) \cdots(r-d+1)
$$

Let $f=\sum_{|\beta|=d} f_{\beta} X^{\beta}$ homogeneous of degree d.

Upper bounds:

$$
f_{\min } \leq f_{\min , \Delta_{n}(r)}=\min _{x \in \Delta_{n}(r)} f(x)=\min _{\alpha \in \mathbb{N}^{n}:|\alpha|=r} f(\alpha / r) \quad\left(=\sum_{|\beta|=d} f_{\beta} \frac{\alpha^{\beta}}{r^{d}}\right)
$$

Lower bounds:

$$
\begin{gathered}
f_{\min } \geq \underline{f}_{-\mathrm{lp}}^{(r)}=\sup \lambda \text { s.t. } f(x)-\lambda=\underbrace{h(x)}_{\left.\mathbb{R}_{+}[x]\right]_{r}}+\underbrace{u(x)\left(1-\sum_{i=1}^{n} x_{i}\right)}_{\mathbb{R}[x]_{r}} \\
=\min _{\alpha \in \mathbb{N}^{n}:|\alpha|=r} \sum_{|\beta|=d} f_{\beta} \frac{\alpha^{\beta}}{r^{\underline{d}}} .
\end{gathered}
$$

$$
\text { where } r^{\underline{d}}=r(r-1) \cdots(r-d+1)
$$

$$
\underline{f}_{l \mathrm{p}}^{(r)} \leq f_{\min } \leq f_{\min , \Delta_{n}(r)}
$$

Error analysis: $\underline{f}_{\mathrm{lp}}^{(r)} \leq f_{\min } \leq f_{\min , \Delta_{n}(r)}$

Theorem (De Klerk-L-Parrilo 2006)

- For any polynomial f of degree d :

$$
f_{\min , \Delta_{n}(r)}-f_{\min }, f_{\min }-\underline{f}_{\mathrm{lp}}^{(r)} \leq \frac{C_{d}}{r}\left(f_{\max }-f_{\min }\right)
$$

Error analysis: $\underline{f}_{1 \mathrm{p}}^{(r)} \leq f_{\min } \leq f_{\min , \Delta_{n}(r)}$

Theorem (De Klerk-L-Parrilo 2006)

- For any polynomial f of degree d :

$$
f_{\min , \Delta_{n}(r)}-f_{\min }, f_{\min }-\underline{f}_{\mathrm{lp}}^{(r)} \leq \frac{c_{d}}{r}\left(f_{\max }-f_{\min }\right)
$$

- Can compute the bounds via $\left|\Delta_{n}(r)\right|=O\left(n^{r}\right)$ function evaluations.

Error analysis: $\underline{f}_{1 \mathrm{p}}^{(r)} \leq f_{\min } \leq f_{\min , \Delta_{n}(r)}$

Theorem (De Klerk-L-Parrilo 2006)

- For any polynomial f of degree d:

$$
f_{\min , \Delta_{n}(r)}-f_{\min }, f_{\min }-\underline{f}_{\mathrm{lp}}^{(r)} \leq \frac{c_{d}}{r}\left(f_{\max }-f_{\min }\right)
$$

- Can compute the bounds via $\left|\Delta_{n}(r)\right|=O\left(n^{r}\right)$ function evaluations.
- Get PTAS for minimizing a polynomial of fixed degree d over Δ_{n}.

Error analysis: $\underline{f}_{1 \mathrm{p}}^{(r)} \leq f_{\min } \leq f_{\min , \Delta_{n}(r)}$

Theorem (De Klerk-L-Parrilo 2006)

- For any polynomial f of degree d:

$$
f_{\min , \Delta_{n}(r)}-f_{\min }, f_{\min }-\underline{f}_{\mathrm{lp}}^{(r)} \leq \frac{c_{d}}{r}\left(f_{\max }-f_{\min }\right)
$$

- Can compute the bounds via $\left|\Delta_{n}(r)\right|=O\left(n^{r}\right)$ function evaluations.
- Get PTAS for minimizing a polynomial of fixed degree d over Δ_{n}.

Convergence rate in $1 / r$ is tight for the PTAS property:

Error analysis: $\underline{f}_{1 \mathrm{p}}^{(r)} \leq f_{\min } \leq f_{\min , \Delta_{n}(r)}$

Theorem (De Klerk-L-Parrilo 2006)

- For any polynomial f of degree d:

$$
f_{\min , \Delta_{n}(r)}-f_{\min }, f_{\min }-\underline{f}_{\mathrm{lp}}^{(r)} \leq \frac{C_{d}}{r}\left(f_{\max }-f_{\min }\right)
$$

- Can compute the bounds via $\left|\Delta_{n}(r)\right|=O\left(n^{r}\right)$ function evaluations.
- Get PTAS for minimizing a polynomial of fixed degree d over Δ_{n}.

Convergence rate in $1 / r$ is tight for the PTAS property: If $f=\sum_{i} x_{i}^{2}$ and $r=\frac{3 n}{2}$ then: $\quad f_{\min , \Delta_{n}(r)}-f_{\min }=\frac{1}{6 r-9}\left(f_{\max }-f_{\min }\right)$

Error analysis: $\underline{f}_{1 \mathrm{p}}^{(r)} \leq f_{\min } \leq f_{\min , \Delta_{n}(r)}$

Theorem (De Klerk-L-Parrilo 2006)

- For any polynomial f of degree d:

$$
f_{\min , \Delta_{n}(r)}-f_{\min }, f_{\min }-\underline{f}_{\mathrm{lp}}^{(r)} \leq \frac{C_{d}}{r}\left(f_{\max }-f_{\min }\right)
$$

- Can compute the bounds via $\left|\Delta_{n}(r)\right|=O\left(n^{r}\right)$ function evaluations.
- Get PTAS for minimizing a polynomial of fixed degree d over Δ_{n}.

Convergence rate in $1 / r$ is tight for the PTAS property: If $f=\sum_{i} x_{i}^{2}$ and $r=\frac{3 n}{2}$ then: $\quad f_{\min , \Delta_{n}(r)}-f_{\min }=\frac{1}{6 r-9}\left(f_{\max }-f_{\min }\right) \leq \frac{n}{4 r^{2}}$.

Error analysis: $\underline{f}_{\mathrm{lp}}^{(r)} \leq f_{\min } \leq f_{\min , \Delta_{n}(r)}$

Theorem (De Klerk-L-Parrilo 2006)

- For any polynomial f of degree d :

$$
f_{\min , \Delta_{n}(r)}-f_{\min }, f_{\min }-f_{l \mathrm{p}}^{(r)} \leq \frac{C_{d}}{r}\left(f_{\max }-f_{\min }\right) .
$$

- Can compute the bounds via $\left|\Delta_{n}(r)\right|=O\left(n^{r}\right)$ function evaluations.
- Get PTAS for minimizing a polynomial of fixed degree d over Δ_{n}.

Convergence rate in $1 / r$ is tight for the PTAS property: If $f=\sum_{i} x_{i}^{2}$
and $r=\frac{3 n}{2}$ then: $\quad f_{\min , \Delta_{n}(r)}-f_{\min }=\frac{1}{6 r-9}\left(f_{\max }-f_{\min }\right) \leq \frac{n}{4 r^{2}}$.
Theorem

- [De Klerk-L-Sun-Vera 2015] $f_{\min , \Delta_{n}(r)}-f_{\min } \leq \frac{c_{f}}{r^{2}}$.

Error analysis: $\underline{f}_{\mathrm{lp}}^{(r)} \leq f_{\min } \leq f_{\min , \Delta_{n}(r)}$

Theorem (De Klerk-L-Parrilo 2006)

- For any polynomial f of degree d :

$$
f_{\min , \Delta_{n}(r)}-f_{\min }, f_{\min }-f_{l \mathrm{p}}^{(r)} \leq \frac{C_{d}}{r}\left(f_{\max }-f_{\min }\right) .
$$

- Can compute the bounds via $\left|\Delta_{n}(r)\right|=O\left(n^{r}\right)$ function evaluations.
- Get PTAS for minimizing a polynomial of fixed degree d over Δ_{n}.

Convergence rate in $1 / r$ is tight for the PTAS property: If $f=\sum_{i} x_{i}^{2}$
and $r=\frac{3 n}{2}$ then: $\quad f_{\min , \Delta_{n}(r)}-f_{\min }=\frac{1}{6 r-9}\left(f_{\max }-f_{\min }\right) \leq \frac{n}{4 r^{2}}$.

Theorem

- [De Klerk-L-Sun-Vera 2015] $f_{\min , \Delta_{n}(r)}-f_{\min } \leq \frac{c_{f}}{r^{2}}$.
- [De Klerk-L-Sun 2015] May choose $C_{f}=m C_{d}\left(f_{\max }-f_{\min }\right)$, if f has a rational minimizer with denominator m.

Key idea for the $1 / r$ convergence rate of $f_{\min , \Delta_{n}(r)}$

- Use the Bernstein approximation of f of order r :

$$
B_{r}(f)(x)=\sum_{\alpha \in \mathbb{N}^{n}:|\alpha|=r} f\left(\frac{\alpha}{r}\right) \frac{r!}{\alpha!} x^{\alpha} .
$$

- So $B_{r}(f)(x)$ is the average value of f over the grid points in $\Delta_{n}(r)$.

$$
f_{\min , \Delta_{n}(r)}-f_{\min } \leq \min _{x \in \Delta_{n}} B_{r}(f)(x)-f_{\min }
$$

Key idea for the $1 / r$ convergence rate of $f_{\min , \Delta_{n}(r)}$

- Use the Bernstein approximation of f of order r :

$$
B_{r}(f)(x)=\sum_{\alpha \in \mathbb{N}^{n}:|\alpha|=r} f\left(\frac{\alpha}{r}\right) \frac{r!}{\alpha!} x^{\alpha} .
$$

- So $B_{r}(f)(x)$ is the average value of f over the grid points in $\Delta_{n}(r)$.

$$
f_{\min , \Delta_{n}(r)}-f_{\min } \leq \min _{x \in \Delta_{n}} B_{r}(f)(x)-f_{\min } \leq \max _{x \in \Delta_{n}} B_{r}(f)(x)-f(x)
$$

- Using properties of Bernstein approximations, one can show:

$$
\max _{x \in \Delta_{n}} B_{r}(f)(x)-f(x) \leq \frac{C_{d}}{r} .
$$

[De Klerk-L-Sun 2014]

Polynomial optimization OVER THE HYPERCUBE

Upper bounds:

$$
f_{\min } \leq f_{\min , Q_{n}(r)}=\min _{x \in Q_{n}(r)} f(x)=\min _{\alpha \in \mathbb{N}^{n}: \alpha_{i} \leq r} f(\alpha / r)
$$

Upper bounds:

$$
f_{\min } \leq f_{\min , Q_{n}(r)}=\min _{x \in Q_{n}(r)} f(x)=\min _{\alpha \in \mathbb{N}^{n}: \alpha_{i} \leq r} f(\alpha / r)
$$

Lower bounds:

$$
f_{\min } \geq \underline{f}_{l \mathrm{lp}}^{(r)}=\sup \lambda \text { s.t. } f(x)-\lambda=\sum_{\alpha, \gamma \in \mathbb{N}^{n}} \underbrace{\lambda_{2, \gamma} x^{\alpha}(1-x)^{\gamma}}_{\text {degree } \leq r}
$$

Upper bounds:

$$
f_{\min } \leq f_{\min , Q_{n}(r)}=\min _{x \in Q_{n}(r)} f(x)=\min _{\alpha \in \mathbb{N}^{n}: \alpha_{i} \leq r} f(\alpha / r)
$$

Lower bounds:

$$
f_{\min } \geq \underline{f}_{\operatorname{lp}}^{(r)}=\sup \lambda \text { s.t. } f(x)-\lambda=\sum_{\alpha, \gamma \in \mathbb{N}^{n}} \underbrace{\lambda_{\alpha, \gamma} x^{\alpha}(1-x)^{\gamma}}_{\text {degree } \leq r}
$$

$$
\underline{f}_{\mathrm{lp}}^{(r)} \leq f_{\min } \leq f_{\min , Q_{r}(d)}
$$

Upper bounds:

$$
f_{\min } \leq f_{\min , Q_{n}(r)}=\min _{x \in Q_{n}(r)} f(x)=\min _{\alpha \in \mathbb{N}^{n}: \alpha_{i} \leq r} f(\alpha / r)
$$

Lower bounds:

$$
f_{\min } \geq \underline{f}_{\mathrm{lp}}^{(r)}=\sup \lambda \text { s.t. } f(x)-\lambda=\sum_{\alpha, \gamma \in \mathbb{N}^{n}} \underbrace{\lambda_{2, \gamma} x^{\alpha}(1-x)^{\gamma}}_{\text {degree } \leq r}
$$

$$
\underline{f}_{\mathrm{lp}}^{(r)} \leq f_{\min } \leq f_{\min , Q_{r}(d)}
$$

Theorem

- [De Klerk-L 2010] For $r \geq d n \quad f_{\min }-\underline{f}_{-\mathrm{lp}}^{(r)} \leq\binom{ d+1}{3} \frac{n^{d+1} L_{f}}{r}$.

Upper bounds:

$$
f_{\min } \leq f_{\min , Q_{n}(r)}=\min _{x \in Q_{n}(r)} f(x)=\min _{\alpha \in \mathbb{N}^{n}: \alpha_{i} \leq r} f(\alpha / r)
$$

Lower bounds:

$$
f_{\min } \geq \underline{f}_{\mathrm{lp}}^{(r)}=\sup \lambda \text { s.t. } f(x)-\lambda=\sum_{\alpha, \gamma \in \mathbb{N}^{n}} \underbrace{\lambda_{2, \gamma} x^{\alpha}(1-x)^{\gamma}}_{\text {degree } \leq r}
$$

$$
\underline{f}_{\mathrm{lp}}^{(r)} \leq f_{\min } \leq f_{\min , Q_{r}(d)}
$$

Theorem

- [De Klerk-L 2010] For $r \geq d n \quad f_{\min }-f_{-1}^{(r)} \leq\binom{ d+1}{3} \frac{n^{d+1} L_{f}}{r}$.
- [De Klerk-Lasserre-L-Sun 2015] For $r \geq 1 \quad f_{\min , Q_{n}(r)}-f_{\min } \leq \frac{C_{f}}{r^{2}}$.

Upper bounds:

$$
f_{\min } \leq f_{\min , Q_{n}(r)}=\min _{x \in Q_{n}(r)} f(x)=\min _{\alpha \in \mathbb{N}^{n}: \alpha_{i} \leq r} f(\alpha / r)
$$

Lower bounds:

$$
f_{\min } \geq \underline{f}_{l \mathrm{lp}}^{(r)}=\sup \lambda \text { s.t. } f(x)-\lambda=\sum_{\alpha, \gamma \in \mathbb{N}^{n}} \underbrace{\lambda_{2, \gamma} x^{\alpha}(1-x)^{\gamma}}_{\text {degree } \leq r}
$$

$$
\underline{f}_{\mathrm{lp}}^{(r)} \leq f_{\min } \leq f_{\min , Q_{r}(d)}
$$

Theorem

- [De Klerk-L 2010] For $r \geq d n \quad f_{\min }-f_{l p}^{(r)} \leq\binom{ d+1}{3} \frac{n^{d+1} L_{f}}{r}$.
- [De Klerk-Lasserre-L-Sun 2015] For $r \geq 1 \quad f_{\min , Q_{n}(r)}-f_{\min } \leq \frac{C_{f}}{r^{2}}$. but $\left|Q_{n}(r)\right|=(r+1)^{n} \ldots$

Measure-Based upper Bounds

Upper bounds using SoS densities

Lasserre (2011) proved: For K compact

$$
\begin{aligned}
& f_{\min }=\min _{x \in K} f(x)=\min _{\mu \text { probability measure on } K} \int_{K} f(x) d \mu \\
& =\inf \int_{K} f(x) h(x) d x \text { s.t. } h \operatorname{SoS}, \int_{K} h(x) d x=1
\end{aligned}
$$

Upper bounds using SoS densities

Lasserre (2011) proved: For K compact

$$
\begin{aligned}
& f_{\min }=\min _{x \in K} f(x)=\min _{\mu \text { probability measure on } K} \int_{K} f(x) d \mu \\
& =\inf \int_{K} f(x) h(x) d x \text { s.t. } h \text { SoS, } \int_{K} h(x) d x=1
\end{aligned}
$$

$\bar{f}_{\text {sos }}^{(r)}=\min \int_{K} f(x) h(x) d x$ s.t. $h \operatorname{SoS}, \operatorname{deg}(h) \leq r, \int_{K} h(x) d x=1$.

Upper bounds using SoS densities

Lasserre (2011) proved: For K compact

$$
\begin{aligned}
& f_{\min }=\min _{x \in K} f(x)=\min _{\mu \text { probability measure on } K} \int_{K} f(x) d \mu \\
& =\inf \int_{K} f(x) h(x) d x \text { s.t. } h \text { SoS, } \int_{K} h(x) d x=1
\end{aligned}
$$

$\bar{f}_{\text {sos }}^{(r)}=\min \int_{K} f(x) h(x) d x$ s.t. $h \operatorname{SoS}, \operatorname{deg}(h) \leq r, \int_{K} h(x) d x=1$.

- Compute $\bar{f}_{\text {sos }}^{(r)}$ as generalized eigenvalue problem
- Need moments $\int_{K} x^{\alpha} d x$:

Upper bounds using SoS densities

Lasserre (2011) proved: For K compact

$$
\begin{aligned}
& f_{\min }=\min _{x \in K} f(x)=\min _{\mu \text { probability measure on } K} \int_{K} f(x) d \mu \\
& =\inf \int_{K} f(x) h(x) d x \text { s.t. } h \text { SoS, } \int_{K} h(x) d x=1
\end{aligned}
$$

$\bar{f}_{\text {sos }}^{(r)}=\min \int_{K} f(x) h(x) d x$ s.t. $h \operatorname{SoS}, \operatorname{deg}(h) \leq r, \int_{K} h(x) d x=1$.

- Compute $\bar{f}_{\text {sos }}^{(r)}$ as generalized eigenvalue problem
- Need moments $\int_{K} x^{\alpha} d x$: known for simplex, hypercube, sphere,...

Upper bounds using SoS densities

Lasserre (2011) proved: For K compact

$$
\begin{aligned}
& f_{\min }=\min _{x \in K} f(x)=\min _{\mu \text { probability measure on } K} \int_{K} f(x) d \mu \\
& =\inf \int_{K} f(x) h(x) d x \text { s.t. } h \operatorname{SoS}, \int_{K} h(x) d x=1
\end{aligned}
$$

$\bar{f}_{\text {sos }}^{(r)}=\min \int_{K} f(x) h(x) d x$ s.t. $h \operatorname{SoS}, \operatorname{deg}(h) \leq r, \int_{K} h(x) d x=1$.

- Compute $\bar{f}_{\text {sos }}^{(r)}$ as generalized eigenvalue problem
- Need moments $\int_{K} x^{\alpha} d x$: known for simplex, hypercube, sphere,...

Theorem (De Klerk-L-Sun 2015)

Assume K is compact and 'nice' (e.g. convex body) and f has Lipschitz constant M_{f}. There exist constants $C_{K}>0$ and $r_{K} \geq 1$ such that

$$
\bar{f}_{\text {sos }}^{(r)}-f_{\min } \leq \frac{C_{K} M_{f}}{\sqrt{r}} \quad \forall r \geq r_{K} .
$$

Example: Motzkin polynomial on $K=[-2,2]^{2}$

$$
f\left(x_{1}, x_{2}\right)=x_{1}^{4} x_{2}^{2}+x_{1}^{2} x_{2}^{4}-3 x_{1}^{2} x_{2}^{2}+1
$$

Global minimizers: $(-1,-1),(-1,1),(1,-1),(1,1)$.

Example: Motzkin polynomial on $[-2,2]^{2}$ (ctd.)

Optimal SoS density h of degree 12

Example: Motzkin polynomial on $[-2,2]^{2}$ (ctd.)

Optimal SoS density hof degree 16

Example: Motzkin polynomial on $[-2,2]^{2}$ (ctd.)

Optimal SoS density hof degree 20

Example: Motzkin polynomial on $[-2,2]^{2}$ (ctd.)

Optimal SoS density hof degree 24

Convergence analysis: sketch of proof

- Let a be a global minimizer of f in K.
- Want: A SoS polynomial h of degree $2 r$ which "looks like" the delta function at a.

Convergence analysis: sketch of proof

- Let a be a global minimizer of f in K.
- Want: A SoS polynomial h of degree $2 r$ which "looks like" the delta function at a.
- Idea: Approximate the Gaussian distribution centered at a with (suitable) variance σ :

$$
G_{a}(x)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}} \exp \left(-\frac{\|x-\mathbf{a}\|^{2}}{2 \sigma^{2}}\right)
$$

Convergence analysis: sketch of proof

- Let a be a global minimizer of f in K.
- Want: A SoS polynomial h of degree $2 r$ which "looks like" the delta function at a.
- Idea: Approximate the Gaussian distribution centered at a with (suitable) variance σ :

$$
G_{a}(x)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}} \exp \left(-\frac{\|x-\mathbf{a}\|^{2}}{2 \sigma^{2}}\right)
$$

- by its truncation of its Taylor expansion at degree $2 r$:

$$
H_{r, \mathrm{a}}(x)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}} \sum_{k=0}^{2 r} \frac{1}{k!}\left(-\frac{\|x-\mathbf{a}\|^{2}}{2 \sigma^{2}}\right)^{k} .
$$

Convergence analysis: sketch of proof

- Let a be a global minimizer of f in K.
- Want: A SoS polynomial h of degree $2 r$ which "looks like" the delta function at a.
- Idea: Approximate the Gaussian distribution centered at a with (suitable) variance σ :

$$
G_{a}(x)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}} \exp \left(-\frac{\|x-\mathbf{a}\|^{2}}{2 \sigma^{2}}\right)
$$

- by its truncation of its Taylor expansion at degree $2 r$:

$$
H_{r, \mathrm{a}}(x)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}} \sum_{k=0}^{2 r} \frac{1}{k!}\left(-\frac{\|x-\mathbf{a}\|^{2}}{2 \sigma^{2}}\right)^{k}
$$

- Fact: $H_{r, \mathbf{a}}(x)$ is a SoS polynomial of degree $4 r$,

Convergence analysis: sketch of proof

- Let a be a global minimizer of f in K.
- Want: A SoS polynomial h of degree $2 r$ which "looks like" the delta function at a.
- Idea: Approximate the Gaussian distribution centered at a with (suitable) variance σ :

$$
G_{a}(x)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}} \exp \left(-\frac{\|x-\mathbf{a}\|^{2}}{2 \sigma^{2}}\right)
$$

- by its truncation of its Taylor expansion at degree $2 r$:

$$
H_{r, \mathrm{a}}(x)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}} \sum_{k=0}^{2 r} \frac{1}{k!}\left(-\frac{\|x-\mathbf{a}\|^{2}}{2 \sigma^{2}}\right)^{k} .
$$

- Fact: $H_{r, \mathbf{a}}(x)$ is a SoS polynomial of degree $4 r$, because the univariate polynomial $p_{r}(t)=\sum_{k=0}^{2 r} \frac{(-t)^{k}}{k!}$ is nonnegative and thus SoS:

$$
0 \leq p_{r}(t)-\exp (-t)
$$

Convergence analysis: sketch of proof

- Let a be a global minimizer of f in K.
- Want: A SoS polynomial h of degree $2 r$ which "looks like" the delta function at a.
- Idea: Approximate the Gaussian distribution centered at a with (suitable) variance σ :

$$
G_{a}(x)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}} \exp \left(-\frac{\|x-\mathbf{a}\|^{2}}{2 \sigma^{2}}\right)
$$

- by its truncation of its Taylor expansion at degree $2 r$:

$$
H_{r, \mathrm{a}}(x)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}} \sum_{k=0}^{2 r} \frac{1}{k!}\left(-\frac{\|x-\mathbf{a}\|^{2}}{2 \sigma^{2}}\right)^{k} .
$$

- Fact: $H_{r, \mathbf{a}}(x)$ is a SoS polynomial of degree $4 r$, because the univariate polynomial $p_{r}(t)=\sum_{k=0}^{2 r} \frac{(-t)^{k}}{k!}$ is nonnegative and thus SoS:

$$
0 \leq p_{r}(t)-\exp (-t) \leq \frac{t^{2 r+1}}{(2 r+1)!}
$$

Convergence analysis

- Define the normalizing constant: $c_{\mathrm{a}}^{r} \int_{K} H_{r, \mathrm{a}}(x) d x=1$.

Convergence analysis

- Define the normalizing constant: $c_{\mathrm{a}}^{r} \int_{K} H_{r, \mathrm{a}}(x) d x=1$.
- K is nice at a if there exist constants η_{K} and ϵ_{K} such that

$$
\operatorname{Vol}\left(B_{\epsilon}(\mathbf{a}) \cap K\right) \geq \eta_{K} \operatorname{Vol}\left(B_{\epsilon}(\mathbf{a})\right) \quad \forall 0<\epsilon \leq \epsilon_{K} .
$$

Will be used to control the constant c_{a}^{r}.

Convergence analysis

- Define the normalizing constant: $c_{\mathrm{a}}^{r} \int_{K} H_{r, \mathrm{a}}(x) d x=1$.
- K is nice at a if there exist constants η_{K} and ϵ_{K} such that

$$
\operatorname{Vol}\left(B_{\epsilon}(\mathbf{a}) \cap K\right) \geq \eta_{K} \operatorname{Vol}\left(B_{\epsilon}(\mathbf{a})\right) \quad \forall 0<\epsilon \leq \epsilon_{K} .
$$

Will be used to control the constant c_{a}^{r}.

- The analysis will work when selecting: $\sigma \sim \frac{1}{\sqrt{2 r+1}}$

Convergence analysis

- Define the normalizing constant: $c_{\mathrm{a}}^{r} \int_{K} H_{r, \mathrm{a}}(x) d x=1$.
- K is nice at a if there exist constants η_{K} and ϵ_{K} such that

$$
\operatorname{Vol}\left(B_{\epsilon}(\mathbf{a}) \cap K\right) \geq \eta_{K} \operatorname{Vol}\left(B_{\epsilon}(\mathbf{a})\right) \quad \forall 0<\epsilon \leq \epsilon_{K} .
$$

Will be used to control the constant c_{a}^{r}.

- The analysis will work when selecting: $\quad \sigma \sim \frac{1}{\sqrt{2 r+1}}$

Main result: If f has Lipschitz constant M_{f} and K is nice at a then

$$
\int_{K} f(x) c_{\mathbf{a}}^{r} H_{r, \mathbf{a}}(x) d x-f_{\min } \leq \frac{C_{K} M_{f}}{\sqrt{r}}
$$

OTHER MEASURE-BASED UPPER BOUNDS FOR THE HYPERCUBE:

- Handelman type Densities
- SChMÜDGEN TYPE DENSITIES

Using Handelman type densities for $K=[0,1]^{n}$

For $K=[0,1]^{n}$, consider the upper bound:

$$
\bar{f}_{\mathrm{lp}}^{(r)}=\min \int_{K} f(x) h(x) d x \text { s.t. } h(x)=\sum_{\alpha, \beta \in \mathbb{N}^{n}} \underbrace{\lambda_{\alpha, \beta}^{\geq 0} x^{\alpha}(1-x)^{\beta}}_{\text {degree }=r}, \int_{K} h(x) d x=1
$$

Using Handelman type densities for $K=[0,1]^{n}$

For $K=[0,1]^{n}$, consider the upper bound:

$$
\bar{f}_{\mathrm{lp}}^{(r)}=\min \int_{K} f(x) h(x) d x \text { s.t. } h(x)=\sum_{\alpha, \beta \in \mathbb{N}^{n}} \underbrace{\lambda_{\alpha, \beta}^{\geq 0} x^{\alpha}(1-x)^{\beta}}_{\text {degree }=r}, \int_{K} h(x) d x=1
$$

Theorem (De Klerk-Lasserre-L-Sun 2015)

- $\bar{f}_{\mathrm{lp}}^{(r)}$ needs $O\left(n^{r}\right)$ elementary computations:

$$
\bar{f}_{\mathrm{lp}}^{(r)}=\min _{|\alpha+\beta|=r} \frac{\int_{K} f(x) x^{\alpha}(1-x)^{\beta} d x}{\int_{K} x^{\alpha}(1-x)^{\beta} d x}
$$

Using Handelman type densities for $K=[0,1]^{n}$

For $K=[0,1]^{n}$, consider the upper bound:

$$
\bar{f}_{\mathrm{lp}}^{(r)}=\min \int_{K} f(x) h(x) d x \text { s.t. } h(x)=\sum_{\alpha, \beta \in \mathbb{N}^{n}} \underbrace{\lambda_{\alpha, \beta}^{\geq 0} x^{\alpha}(1-x)^{\beta}}_{\text {degree }=r}, \int_{K} h(x) d x=1
$$

Theorem (De Klerk-Lasserre-L-Sun 2015)

- $\bar{f}_{\mathrm{lp}}^{(r)}$ needs $O\left(n^{r}\right)$ elementary computations:

$$
\bar{f}_{\mathrm{lp}}^{(r)}=\min _{|\alpha+\beta|=r} \frac{\int_{K} f(x) x^{\alpha}(1-x)^{\beta} d x}{\int_{K} x^{\alpha}(1-x)^{\beta} d x}
$$

- Convergence rate: For $r \geq r_{0}$

$$
\bar{f}_{\mathrm{lp}}^{(r)}-f_{\min } \leq \frac{C_{f}}{\sqrt{r}}
$$

Using Handelman type densities for $K=[0,1]^{n}$

For $K=[0,1]^{n}$, consider the upper bound:

$$
\bar{f}_{\mathrm{lp}}^{(r)}=\min \int_{K} f(x) h(x) d x \text { s.t. } h(x)=\sum_{\alpha, \beta \in \mathbb{N}^{n}} \underbrace{\lambda_{\alpha, \beta}}_{\text {degree }=r} x^{\alpha}(1-x)^{\beta}, \int_{K} h(x) d x=1 \text {. }
$$

Theorem (De Klerk-Lasserre-L-Sun 2015)

- $\bar{f}_{\mathrm{lp}}^{(r)}$ needs $O\left(n^{r}\right)$ elementary computations:

$$
\bar{f}_{\mathrm{lp}}^{(r)}=\min _{|\alpha+\beta|=r} \frac{\int_{K} f(x) x^{\alpha}(1-x)^{\beta} d x}{\int_{K} x^{\alpha}(1-x)^{\beta} d x}
$$

- Convergence rate: For $r \geq r_{0}$

$$
\bar{f}_{\mathrm{lp}}^{(r)}-f_{\min } \leq \frac{C_{f}}{\sqrt{r}}, \quad \leq \frac{C_{f}^{\prime}}{r} \quad \text { if } f \text { has a rational minimizer. }
$$

\rightsquigarrow Link to the beta distribution

Motzkin polynomial:
$f(x, y)=(4 x-2)^{4}(4 y-2)^{2}+(4 x-2)^{2}(4 y-2)^{4}-3(4 x-2)^{2}(4 y-2)^{2}+1$ over $K=[0,1]^{2}$: Handelman-type densities (deg 24,50) \& SOS (deg 24)

Using Schmüdgen type densities for $K=[-1,1]^{n}$

For $K=[-1,1]^{n}$ consider the upper bound:

$$
\bar{f}_{\mathrm{sosS}}^{(r)}=\min \int_{K} f(x) h(x) d \mu_{n} \text { s.t. } h(x)=\sum_{I \subseteq[n]}^{\underbrace{\sigma_{I}}_{\text {SoS }}\left(1-x^{2}\right)^{\prime}}, \quad \int_{\text {degree } \leq r} h(x) d \mu_{n}=1
$$

Using Schmüdgen type densities for $K=[-1,1]^{n}$

For $K=[-1,1]^{n}$ consider the upper bound:

$$
\begin{gathered}
\bar{f}_{\mathrm{sosS}}^{(r)}=\min \int_{K} f(x) h(x) d \mu_{n} \text { s.t. } h(x)=\sum_{I \subseteq[n]}^{\underbrace{\sigma_{I}}_{\text {degree } \leq r}\left(1-x^{2}\right)^{\prime}, \int_{K} h(x) d \mu_{n}=1} \\
\text { where } d \mu_{n}=\left(\prod_{i=1}^{n} \pi \sqrt{1-x_{i}}\right)^{-1} d x .
\end{gathered}
$$

Using Schmüdgen type densities for $K=[-1,1]^{n}$
For $K=[-1,1]^{n}$ consider the upper bound:

$$
\begin{gathered}
\bar{f}_{\text {sosS }}^{(r)}=\min \int_{K} f(x) h(x) d \mu_{n} \text { s.t. } h(x)=\sum_{I \subseteq[n]}^{\underbrace{\sigma_{1}}_{\text {degree } \leq r}\left(1-x^{2}\right)^{\prime}}, \int_{K} h(x) d \mu_{n}=1 \\
\text { where } d \mu_{n}=\left(\prod_{i=1}^{n} \pi \sqrt{1-x_{i}}\right)^{-1} d x .
\end{gathered}
$$

Theorem (De Klerk-Hess-L 2016)

- $\bar{f}_{\text {sos }}^{(r)}$ can be computed as generalized eigenvalue problem:

$$
\bar{f}_{\text {sosS }}^{(r)}=\min _{\subseteq \subseteq[n]}\left\{\max _{\lambda} \lambda \text { s.t. } A^{(l)}-\lambda B^{(I)} \succeq 0\right\} .
$$

Using Schmüdgen type densities for $K=[-1,1]^{n}$
For $K=[-1,1]^{n}$ consider the upper bound:

$$
\begin{gathered}
\bar{f}_{\text {sosS }}^{(r)}=\min \int_{K} f(x) h(x) d \mu_{n} \text { s.t. } h(x)=\sum_{I \subseteq[n]}^{\underbrace{\sigma_{1}}_{\text {degree } \leq r}\left(1-x^{2}\right)^{\prime}}, \int_{K} h(x) d \mu_{n}=1 \\
\text { where } d \mu_{n}=\left(\prod_{i=1}^{n} \pi \sqrt{1-x_{i}}\right)^{-1} d x .
\end{gathered}
$$

Theorem (De Klerk-Hess-L 2016)

- $\bar{f}_{\text {sos }}^{(r)}$ can be computed as generalized eigenvalue problem:

$$
\bar{f}_{\text {sosS }}^{(r)}=\min _{\subseteq \subseteq[n]}\left\{\max _{\lambda} \lambda \text { s.t. } A^{(l)}-\lambda B^{(I)} \succeq 0\right\} .
$$

- Convergence rate: For $r \geq r_{0}$

$$
\bar{f}_{\text {sosS }}^{(r)}-f_{\min } \leq \frac{C_{f}}{r^{2}} .
$$

Motzkin polynomial: $f(x, y)=64\left(x^{4} y^{2}+x^{2} y^{4}\right)-48 x^{2} y^{2}+1$ over $K=[-1,1]^{2}$

Optimal Schmüdgen type densities of degree 12, 16:

Key idea: use the Polynomial Kernel Method

Following [Weisse-Alvermann-Fehske 2006] use approximations of the delta function at a by taking its convolution with the Jackson kernel:

Key idea: use the Polynomial Kernel Method

Following [Weisse-Alvermann-Fehske 2006] use approximations of the delta function at a by taking its convolution with the Jackson kernel:

$$
\delta_{\mathbf{a}}^{(r)}(x)=1+2 \sum_{k=1}^{r} g_{k}^{(r)} T_{k}(\mathbf{a}) T_{k}(x)
$$

Key idea: use the Polynomial Kernel Method

Following [Weisse-Alvermann-Fehske 2006] use approximations of the delta function at a by taking its convolution with the Jackson kernel:

$$
\delta_{\mathbf{a}}^{(r)}(x)=1+2 \sum_{k=1}^{r} g_{k}^{(r)} T_{k}(\mathbf{a}) T_{k}(x)
$$

- $T_{k}(x)=\cos (k \arccos x)$: Tchebyshev polynomials

Key idea: use the Polynomial Kernel Method

Following [Weisse-Alvermann-Fehske 2006] use approximations of the delta function at a by taking its convolution with the Jackson kernel:

$$
\delta_{\mathbf{a}}^{(r)}(x)=1+2 \sum_{k=1}^{r} g_{k}^{(r)} T_{k}(\mathbf{a}) T_{k}(x)
$$

- $T_{k}(x)=\cos (k \arccos x)$: Tchebyshev polynomials \rightsquigarrow orthogonal basis of $\mathbb{R}[x]$ for inner product: $\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d \mu_{1}$.

Key idea: use the Polynomial Kernel Method

Following [Weisse-Alvermann-Fehske 2006] use approximations of the delta function at a by taking its convolution with the Jackson kernel:

$$
\delta_{\mathbf{a}}^{(r)}(x)=1+2 \sum_{k=1}^{r} g_{k}^{(r)} T_{k}(\mathbf{a}) T_{k}(x)
$$

- $T_{k}(x)=\cos (k \arccos x)$: Tchebyshev polynomials \rightsquigarrow orthogonal basis of $\mathbb{R}[x]$ for inner product: $\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d \mu_{1}$.
- $\vartheta_{r}=\frac{\pi}{r+2}, g_{k}^{(r)}=\frac{1}{r+2}\left((r+2-k) \cos \left(k \vartheta_{r}\right)+\frac{\sin \left(k \vartheta_{r}\right)}{\sin \vartheta_{r}} \cos \vartheta_{r}\right)$,

Key idea: use the Polynomial Kernel Method

Following [Weisse-Alvermann-Fehske 2006] use approximations of the delta function at a by taking its convolution with the Jackson kernel:

$$
\delta_{\mathbf{a}}^{(r)}(x)=1+2 \sum_{k=1}^{r} g_{k}^{(r)} T_{k}(\mathbf{a}) T_{k}(x)
$$

- $T_{k}(x)=\cos (k \arccos x)$: Tchebyshev polynomials \rightsquigarrow orthogonal basis of $\mathbb{R}[x]$ for inner product: $\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d \mu_{1}$.
- $\vartheta_{r}=\frac{\pi}{r+2}, g_{k}^{(r)}=\frac{1}{r+2}\left((r+2-k) \cos \left(k \vartheta_{r}\right)+\frac{\sin \left(k \vartheta_{r}\right)}{\sin \vartheta_{r}} \cos \vartheta_{r}\right)$, so that:
- $\delta_{\mathbf{a}}^{(r)}(x)$ is a polynomial (of degree r) density for μ_{1} on $[-1,1]$.

Key idea: use the Polynomial Kernel Method

Following [Weisse-Alvermann-Fehske 2006] use approximations of the delta function at a by taking its convolution with the Jackson kernel:

$$
\delta_{\mathbf{a}}^{(r)}(x)=1+2 \sum_{k=1}^{r} g_{k}^{(r)} T_{k}(\mathbf{a}) T_{k}(x)
$$

- $T_{k}(x)=\cos (k \arccos x)$: Tchebyshev polynomials \rightsquigarrow orthogonal basis of $\mathbb{R}[x]$ for inner product: $\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d \mu_{1}$.
- $\vartheta_{r}=\frac{\pi}{r+2}, g_{k}^{(r)}=\frac{1}{r+2}\left((r+2-k) \cos \left(k \vartheta_{r}\right)+\frac{\sin \left(k \vartheta_{r}\right)}{\sin \vartheta_{r}} \cos \vartheta_{r}\right)$, so that:
- $\delta_{\mathrm{a}}^{(r)}(x)$ is a polynomial (of degree r) density for μ_{1} on $[-1,1]$.

Hence: $\delta_{\mathbf{a}}^{(r)}(x)=\sigma_{0}+\sigma_{1}\left(1-x^{2}\right)$, with σ_{0}, σ_{1} SoS of degree $\leq r$.

Key idea: use the Polynomial Kernel Method

Following [Weisse-Alvermann-Fehske 2006] use approximations of the delta function at a by taking its convolution with the Jackson kernel:

$$
\delta_{\mathbf{a}}^{(r)}(x)=1+2 \sum_{k=1}^{r} g_{k}^{(r)} T_{k}(\mathbf{a}) T_{k}(x)
$$

- $T_{k}(x)=\cos (k \arccos x)$: Tchebyshev polynomials \rightsquigarrow orthogonal basis of $\mathbb{R}[x]$ for inner product: $\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d \mu_{1}$.
- $\vartheta_{r}=\frac{\pi}{r+2}, g_{k}^{(r)}=\frac{1}{r+2}\left((r+2-k) \cos \left(k \vartheta_{r}\right)+\frac{\sin \left(k \vartheta_{r}\right)}{\sin \vartheta_{r}} \cos \vartheta_{r}\right)$, so that:
- $\delta_{\mathrm{a}}^{(r)}(x)$ is a polynomial (of degree r) density for μ_{1} on $[-1,1]$.

Hence: $\delta_{\mathbf{a}}^{(r)}(x)=\sigma_{0}+\sigma_{1}\left(1-x^{2}\right)$, with σ_{0}, σ_{1} SoS of degree $\leq r$.

- For $k=1 \quad\left|g_{1}^{(r)}-1\right|=O\left(1 / r^{2}\right)$.

Key idea: use the Polynomial Kernel Method

Following [Weisse-Alvermann-Fehske 2006] use approximations of the delta function at a by taking its convolution with the Jackson kernel:

$$
\delta_{\mathbf{a}}^{(r)}(x)=1+2 \sum_{k=1}^{r} g_{k}^{(r)} T_{k}(\mathbf{a}) T_{k}(x)
$$

- $T_{k}(x)=\cos (k \arccos x)$: Tchebyshev polynomials \rightsquigarrow orthogonal basis of $\mathbb{R}[x]$ for inner product: $\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d \mu_{1}$.
- $\vartheta_{r}=\frac{\pi}{r+2}, g_{k}^{(r)}=\frac{1}{r+2}\left((r+2-k) \cos \left(k \vartheta_{r}\right)+\frac{\sin \left(k \vartheta_{r}\right)}{\sin \vartheta_{r}} \cos \vartheta_{r}\right)$, so that:
- $\delta_{\mathrm{a}}^{(r)}(x)$ is a polynomial (of degree r) density for μ_{1} on $[-1,1]$.

Hence: $\delta_{\mathbf{a}}^{(r)}(x)=\sigma_{0}+\sigma_{1}\left(1-x^{2}\right)$, with σ_{0}, σ_{1} SoS of degree $\leq r$.

- For $k=1 \quad\left|g_{1}^{(r)}-1\right|=O\left(1 / r^{2}\right)$.
\rightsquigarrow rate of convergence in $1 / r^{2}$ for $\bar{f}_{\text {sosS }}^{(r)}$.

Kernel approximations $\delta_{0}^{(r)}(x)$ of the Dirac at degree $r=8,16,32,64$:

$$
\frac{\delta_{0}^{(r)}(x)}{\pi \sqrt{1-x^{2}}} \sim \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{x^{2}}{2 \sigma^{2}}\right), \quad \text { with } \sigma \sim \frac{\pi}{r+2}
$$

Concluding remarks

- Discrepancy between theory and practice for the upper bounds:

Concluding remarks

- Discrepancy between theory and practice for the upper bounds:

r	Matyas		Three-Hump	Camel	Motzkin	
	Value	Time (sec.)	Value	Time (sec.)	Value	Time (sec.)
2	8.26667	0.000739	265.774	0.000742	4.2	0.000719
6	4.28172	0.000072	29.0005	0.000066	1.06147	0.000080
12	2.99563	0.000263	4.43983	0.000263	0.801069	0.000208
18	1.83356	0.000655	2.55032	0.000586	0.565553	0.000766
24	1.11785	0.001753	1.2775	0.001693	0.406076	0.001712
30	0.8524	0.002270	1.0185	0.002936	0.3004	0.002351
36	0.5760	0.005510	0.7113	0.004882	0.2300	0.006060
40	0.4815	0.006975	0.6064	0.007031	0.1817	0.007686

Matyas: $f=\left(x_{1}+2 x_{2}-7\right)^{2}+\left(2 x_{1}+x_{2}-5\right)^{2}, \quad K=[-10,10]^{2}$.
Three-Hump Camel: $f=2 x_{1}^{2}-1.05 x_{1}^{4}+\frac{1}{6} x_{1}^{6}+x_{1} x_{2}+x_{2}^{2}, \quad K=[-5,5]^{2}$.
Motzkin: $f=x_{1}^{4} x_{2}^{2}+x_{1}^{2} x_{2}^{4}-3 x_{1}^{2} x_{2}^{2}+1, \quad K=[-2,2]^{2}$.
$f_{\min }=0$, bounds $\bar{f}_{\text {sos }}^{(r)}$ with SoS density.

Concluding remarks

- Discrepancy between theory and practice for the upper bounds, and also for the lower vs. upper bounds:

Better theoretical convergence results for the upper bounds, but slower in practice...

Concluding remarks

- Discrepancy between theory and practice for the upper bounds, and also for the lower vs. upper bounds:

Better theoretical convergence results for the upper bounds, but slower in practice...

- Problem: Show better convergence rates for the lower bounds.

New techniques needed ...

Concluding remarks

- One can use the upper bounds to generate good feasible solutions using sampling.

r	$\bar{f}_{\text {sos }}^{(r)}$	Mean	Variance	Minimum	Sample Size
2	265.774	216.773	177142.0	0.106854	20
		261.23	193466.0	0.11705	1000
4	29.0005	28.0344	2964.85	1.1718	20
		6712.8	0.014255	1000	
14	4.43983	3.96711	20.3193	0.260331	20
		3.7911	57.847	0.0076111	1000
22	1.71275	1.30757	1.90985	0.0320489	20
		1.6379	7.2518	0.0021144	1000
24	1.27749	0.841194	0.914514	0.0369565	20
		2.3	0.0005154	1000	
Uniform Sample	304.032	163021.0	1.65885	20	
	243.216	183724.0	0.00975034	1000	

SoS upper bounds for the Three-Hamp Camel function:
$f=2 x_{1}^{2}-1.05 x_{1}^{4}+\frac{1}{6} x_{1}^{6}+x_{1} x_{2}+x_{2}^{2}$ over $K=[-5,5]^{2}$.

Thank you

Based on the papers

- Improved convergence rates for Lasserre-type hierarchies of upper bounds for box-constrained polynomial optimization. With E. de Klerk, R. Hess, arXiv:1603.03329.
- Bound-constrained polynomial optimization using only elementary calculations. With E. de Klerk, J. Lasserre and Z. Sun, arXiv:1507.04404.
- Convergence analysis for Lasserre's measure-based hierarchy of upper bounds for polynomial optimization. With E. de Klerk and Z. Sun, arXiv:1411.6867
- On the convergence rate of grid search for polynomial optimization over the simplex. With E. de Klerk, Z. Sun, J. Vera, Opt. Letters, 2016.
- An alternative proof of a PTAS for fixed-degree polynomial optimization over the simplex. With E. de Klerk and Z. Sun. Math.Prog. 2014.
- A PTAS for the minimization of polynomials of fixed degree over the simplex. With E. De Klerk and P. Parrilo. TCS, 2006.

Optimization over the unit sphere

SOS lower bounds:

$$
\underline{f}_{\text {sosS }}^{(r)}=\sup \lambda \text { s.t. } f(x)-\lambda=\underbrace{\sigma_{0}}_{\text {SOS of degree } 2 r}+u\left(1-\sum_{i=1}^{n} x_{i}^{2}\right) .
$$

Theorem
Let f be a homogeneous polynomial of even degree.

- [Faybusovich 2003] $f_{\min }-f_{\text {soss }}^{(r)}=O\left(\frac{1}{r}\right)$ for $r=O(n)$.
- In addition, Doherty-Wehner (2013) construct measure-based upper bounds with the same performance guarantee.
- Parrilo-Wehner announced convergence in $O\left(\frac{1}{r^{2}}\right)$ for both upper and lower bounds.

