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Polynomial optimization
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Minimize a polynomial function f over a region

K = {x ∈ Rn : g1(x) ≥ 0, . . . , gm(x) ≥ 0}

defined by polynomial inequalities

Compute: fmin = minx∈K f (x)



This is a hard problem, even for simple sets K like

I the standard simplex

∆n = {x ∈ Rn : x1, . . . , xn ≥ 0,
n∑

I=1

xi = 1}

I the hypercube Qn = [0, 1]n

I the unit sphere

Sn−1 = {x ∈ Rn :
n∑

i=1

x2
i = 1}

It captures hard combinatorial optimization problems like computing
the stability number α(G ) and Max-Cut.



Polynomial optimization formulations for α(G )

I Optimization over the simplex: [Motzkin-Straus 1965]

1

α(G )
= min xT (I + AG )x s.t.

∑
v∈V

xv = 1, xv ≥ 0 (v ∈ V )

I Optimization over the hypercube: [Park-Hong 2011]

α(G ) = max
∑
u∈V

xu −
∑
uv∈E

xuxv s.t. x ∈ [0, 1]n

I Optimization over the unit sphere: [Nesterov 2003]

2
√

2

3
√

3

√
1− 1

α(G )
= max 2

∑
ij∈G

zijyiyj s.t. (y , z) ∈ Sn+m−1



Lower bounds for polynomial optimization

To approximate:

fmin = min
x∈K

f (x), where K = {x : g1(x) ≥ 0, . . . , gm(x) ≥ 0}

use LP/SDP hierarchies

[Shor (1987), Nesterov (2000), Parrilo, Lasserre (2000–)]

• Express fmin = sup λ s.t. f (x)− λ ≥ 0 over K

• Replace nonnegativity by easier sufficient conditions

Testing whether f is nonnegative is hard, but

testing whether f is a sum-of-squares (SoS): f =
∑

j g 2
j

can be done efficiently using semidefinite programming (SDP)
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Lower bounds for polynomial optimization

fmin = min
x∈K

f (x), where K = {x : g1(x) ≥ 0, . . . , gm(x) ≥ 0}

• Express fmin = sup λ s.t. f (x)− λ ≥ 0 over K

• Replace nonnegativity by easier sufficient conditions:

(1) [LP: Handelman type] f − λ =
∑
α∈Nm

λα

m∏
j=1

g
αj

j , where λα ≥ 0

(2) [SoS: Schmüdgen type] f − λ =
∑
J⊆[m]

σJ

∏
j∈J

gj , where σJ SoS

(3) [SoS: Putinar type] f − λ = σ0 +
∑m

j=1 σjgj , where σj SoS

• Get lower bounds f
(r)
lp , f

(r)
sosS, f

(r)
sosP for fmin by bounding degrees:

deg gα, deg(σJg J), deg(σjgj) ≤ r . Clearly:

{ f
(r)
lp , f

(r)
sosP } ≤ f

(r)
sosS ≤ fmin
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Representation results for positive polynomials

Theorem
Assume K is compact and f is strictly positive on K .

(1) [Krivine-Handelman] Assume K full-dimensional polytope (all gj

have degree 1). Then f =
∑
α∈Nm λα

∏m
j=1 g

αj

j , where λα ≥ 0.

(2) [Schmüdgen 1991] Then f =
∑

J⊆[m] σJ
∏

j∈J gj , where σJ SoS.

(3) [Putinar 1993] Assume {x : gj(x) ≥ 0} compact for some j. Then
f = σ0 +

∑m
j=1 σjgj , where σj SoS.

I Asymptotic convergence of the lower bounds to fmin. [Lasserre 01]

I Finite convergence holds generically for SoS bounds. [Nie 14]

I What about the rate of convergence?
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Rate of convergence of SoS lower bounds

Theorem
Assume K ⊆ (−1, 1)n. For f =

∑
α fαxα, set Lf = maxα |fα| α!

|α|! .

I [Schweighofer 2004] Analysis of Schmüdgen type bounds:

There exists a constant c > 0 such that for any polynomial f of
degree d:

fmin − f
(r)
sosS ≤ cd4n2dLf

1
c
√

r
for r ≥ cdcncd .

I [Nie-Schweighofer 2007] Analysis of Putinar type bounds:

There exists a constant c ′ > 0 such that for any polynomial f of
degree d:

fmin − f
(r)
sosP ≤ 6d3n2dLf

1
c′
√

log r
c′

for r ≥ c ′ exp((2d2nd)c
′
).

Better results for some simple sets K?

Can choose c = 1 for Schmüdgen type bounds for simplex & cube.
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Upper bounds for polynomial optimization

I For simple sets K = ∆n or Qn: minimize f over the rational grid
points with given denominator r .

I For general compact sets K , use Lasserre idea:

fmin = min
x∈K

f (x) = min
µ probability measure on K

∫
K

f (x)µ(dx)

and select suitable probability measures µ over K .

Theorem (Lasserre 2011)
For K compact one may use sum-of-squares density functions:

fmin = inf

∫
K

f (x)h(x)dx s.t. h SoS,

∫
K

h(x)dx = 1.

Bounding degree: deg(h) ≤ 2r , get upper bounds f
(r)

sos converging to fmin.

What about the rate of convergence? ... in O(1/
√

r)
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This talk

Analysis of the rate of convergence:

I For the simplex ∆n and the cube Qn: regular grid upper bounds
and the LP lower bounds.

I For K compact: SoS-density upper bounds.

I For the cube Qn: other upper bounds (using other density
functions).



Polynomial optimization
over the simplex



Upper bounds: For r ≥ 1

∆n(r) = {x ∈ ∆n : rx ∈ Nn}

fmin,∆n(r) = min
x∈∆n(r)

f (x)

Example: n = 3:



Upper bounds: For r ≥ 1

∆n(r) = {x ∈ ∆n : rx ∈ Nn}

fmin,∆n(r) = min
x∈∆n(r)

f (x)

Example: n = 3:

r = 3



Let f =
∑
|β|=d fβxβ homogeneous of degree d .

Upper bounds:

fmin ≤ fmin,∆n(r) = min
x∈∆n(r)

f (x)

= min
α∈Nn:|α|=r

f (α/r) (=
∑
|β|=d

fβ
αβ

rd
)

Lower bounds:

fmin ≥ f
(r)
lp = sup λ s.t. f (x)− λ = h(x)︸︷︷︸

R+[x]r

+ u(x)(1−
n∑

i=1

xi )︸ ︷︷ ︸
R[x]r

= min
α∈Nn:|α|=r

∑
|β|=d

fβ
αβ

rd
.

where rd = r(r − 1) · · · (r − d + 1)

f
(r)
lp ≤ fmin ≤ fmin,∆n(r)
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Error analysis: f
(r)
lp ≤ fmin ≤ fmin,∆n(r)

Theorem (De Klerk-L-Parrilo 2006)

I For any polynomial f of degree d:

fmin,∆n(r) − fmin, fmin − f
(r)
lp ≤

Cd

r (fmax − fmin).

I Can compute the bounds via |∆n(r)| = O(nr ) function evaluations.

I Get PTAS for minimizing a polynomial of fixed degree d over ∆n.

Convergence rate in 1/r is tight for the PTAS property: If f =
∑

i x2
i

and r = 3n
2 then: fmin,∆n(r) − fmin = 1

6r−9 (fmax − fmin) ≤ n
4r2 .

Theorem

I [De Klerk-L-Sun-Vera 2015] fmin,∆n(r) − fmin ≤ Cf

r2 .

I [De Klerk-L-Sun 2015] May choose Cf = mCd(fmax − fmin), if f has
a rational minimizer with denominator m.
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Key idea for the 1/r convergence rate of fmin,∆n(r)

I Use the Bernstein approximation of f of order r :

Br (f )(x) =
∑

α∈Nn:|α|=r

f (
α

r
)

r !

α!
xα.

I So Br (f )(x) is the average value of f over the grid points in ∆n(r).

I

fmin,∆n(r) − fmin ≤ min
x∈∆n

Br (f )(x)− fmin

≤ max
x∈∆n

Br (f )(x)− f (x)

I Using properties of Bernstein approximations, one can show:

max
x∈∆n

Br (f )(x)− f (x) ≤ Cd

r
.

[De Klerk-L-Sun 2014]
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Polynomial optimization
over the hypercube



Upper bounds:

fmin ≤ fmin,Qn(r) = min
x∈Qn(r)

f (x) = min
α∈Nn:αi≤r

f (α/r)

Lower bounds:

fmin ≥ f
(r)
lp = sup λ s.t. f (x)− λ =

∑
α,γ∈Nn

λα,γ︸︷︷︸
≥0

xα(1− x)γ

︸ ︷︷ ︸
degree ≤r

f
(r)
lp ≤ fmin ≤ fmin,Qr (d)

Theorem

I [De Klerk-L 2010] For r ≥ dn fmin − f
(r)
lp ≤

(
d+1

3

)
nd+1Lf

r .

I [De Klerk-Lasserre-L-Sun 2015] For r ≥ 1 fmin,Qn(r)− fmin ≤ Cf

r2 .

but |Qn(r)| = (r + 1)n ...
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Measure-based upper bounds



Upper bounds using SoS densities

Lasserre (2011) proved: For K compact

fmin = min
x∈K

f (x) = min
µ probability measure on K

∫
K

f (x)dµ

= inf
∫
K

f (x)h(x)dx s.t. h SoS,
∫
K

h(x)dx = 1.

f
(r)

sos = min
∫
K

f (x)h(x)dx s.t. h SoS, deg(h) ≤ r ,
∫
K

h(x)dx = 1.

I Compute f
(r)

sos as generalized eigenvalue problem
I Need moments

∫
K

xαdx : known for simplex, hypercube, sphere,...

Theorem (De Klerk-L-Sun 2015)
Assume K is compact and ‘nice’ (e.g. convex body) and f has Lipschitz
constant Mf . There exist constants CK > 0 and rK ≥ 1 such that

f
(r)

sos − fmin ≤
CKMf√

r
∀r ≥ rK .



Upper bounds using SoS densities

Lasserre (2011) proved: For K compact

fmin = min
x∈K

f (x) = min
µ probability measure on K

∫
K

f (x)dµ

= inf
∫
K

f (x)h(x)dx s.t. h SoS,
∫
K

h(x)dx = 1.

f
(r)

sos = min
∫
K

f (x)h(x)dx s.t. h SoS, deg(h) ≤ r ,
∫
K

h(x)dx = 1.

I Compute f
(r)

sos as generalized eigenvalue problem
I Need moments

∫
K

xαdx : known for simplex, hypercube, sphere,...

Theorem (De Klerk-L-Sun 2015)
Assume K is compact and ‘nice’ (e.g. convex body) and f has Lipschitz
constant Mf . There exist constants CK > 0 and rK ≥ 1 such that

f
(r)

sos − fmin ≤
CKMf√

r
∀r ≥ rK .



Upper bounds using SoS densities

Lasserre (2011) proved: For K compact

fmin = min
x∈K

f (x) = min
µ probability measure on K

∫
K

f (x)dµ

= inf
∫
K

f (x)h(x)dx s.t. h SoS,
∫
K

h(x)dx = 1.

f
(r)

sos = min
∫
K

f (x)h(x)dx s.t. h SoS, deg(h) ≤ r ,
∫
K

h(x)dx = 1.

I Compute f
(r)

sos as generalized eigenvalue problem
I Need moments

∫
K

xαdx :

known for simplex, hypercube, sphere,...

Theorem (De Klerk-L-Sun 2015)
Assume K is compact and ‘nice’ (e.g. convex body) and f has Lipschitz
constant Mf . There exist constants CK > 0 and rK ≥ 1 such that

f
(r)

sos − fmin ≤
CKMf√

r
∀r ≥ rK .



Upper bounds using SoS densities

Lasserre (2011) proved: For K compact

fmin = min
x∈K

f (x) = min
µ probability measure on K

∫
K

f (x)dµ

= inf
∫
K

f (x)h(x)dx s.t. h SoS,
∫
K

h(x)dx = 1.

f
(r)

sos = min
∫
K

f (x)h(x)dx s.t. h SoS, deg(h) ≤ r ,
∫
K

h(x)dx = 1.

I Compute f
(r)

sos as generalized eigenvalue problem
I Need moments

∫
K

xαdx : known for simplex, hypercube, sphere,...

Theorem (De Klerk-L-Sun 2015)
Assume K is compact and ‘nice’ (e.g. convex body) and f has Lipschitz
constant Mf . There exist constants CK > 0 and rK ≥ 1 such that

f
(r)

sos − fmin ≤
CKMf√

r
∀r ≥ rK .



Upper bounds using SoS densities

Lasserre (2011) proved: For K compact

fmin = min
x∈K

f (x) = min
µ probability measure on K

∫
K

f (x)dµ

= inf
∫
K

f (x)h(x)dx s.t. h SoS,
∫
K

h(x)dx = 1.

f
(r)

sos = min
∫
K

f (x)h(x)dx s.t. h SoS, deg(h) ≤ r ,
∫
K

h(x)dx = 1.

I Compute f
(r)

sos as generalized eigenvalue problem
I Need moments

∫
K

xαdx : known for simplex, hypercube, sphere,...

Theorem (De Klerk-L-Sun 2015)
Assume K is compact and ‘nice’ (e.g. convex body) and f has Lipschitz
constant Mf . There exist constants CK > 0 and rK ≥ 1 such that

f
(r)

sos − fmin ≤
CKMf√

r
∀r ≥ rK .



Example: Motzkin polynomial on K = [−2, 2]2

f (x1, x2) = x4
1 x2

2 + x2
1 x4

2 − 3x2
1 x2

2 + 1

Global minimizers: (−1,−1), (−1, 1), (1,−1), (1, 1).
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Example: Motzkin polynomial on [−2, 2]2 (ctd.)

Optimal SoS density h of degree 12
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Example: Motzkin polynomial on [−2, 2]2 (ctd.)

Optimal SoS density h of degree 16
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Example: Motzkin polynomial on [−2, 2]2 (ctd.)

Optimal SoS density h of degree 20

−2
−1

0
1

2

−2

−1

0

1

2
0

0.2

0.4

0.6

0.8

x
1

x
2

h* (x
1,x

2)



Example: Motzkin polynomial on [−2, 2]2 (ctd.)

Optimal SoS density h of degree 24
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Convergence analysis: sketch of proof

I Let a be a global minimizer of f in K .

I Want: A SoS polynomial h of degree 2r which ”looks like” the
delta function at a.

I Idea: Approximate the Gaussian distribution centered at a with
(suitable) variance σ:

Ga(x) =
1

(2πσ2)n/2
exp

(
−‖x − a‖2

2σ2

)
I by its truncation of its Taylor expansion at degree 2r :

Hr ,a(x) =
1

(2πσ2)n/2

2r∑
k=0

1

k!

(
−‖x − a‖2

2σ2

)k

.

I Fact: Hr ,a(x) is a SoS polynomial of degree 4r , because the

univariate polynomial pr (t) =
∑2r

k=0
(−t)k

k! is nonnegative and thus
SoS:

0 ≤ pr (t)− exp(−t) ≤ t2r+1

(2r + 1)!
.



Convergence analysis: sketch of proof

I Let a be a global minimizer of f in K .

I Want: A SoS polynomial h of degree 2r which ”looks like” the
delta function at a.

I Idea: Approximate the Gaussian distribution centered at a with
(suitable) variance σ:

Ga(x) =
1

(2πσ2)n/2
exp

(
−‖x − a‖2

2σ2

)

I by its truncation of its Taylor expansion at degree 2r :

Hr ,a(x) =
1

(2πσ2)n/2

2r∑
k=0

1

k!

(
−‖x − a‖2

2σ2

)k

.

I Fact: Hr ,a(x) is a SoS polynomial of degree 4r , because the

univariate polynomial pr (t) =
∑2r

k=0
(−t)k

k! is nonnegative and thus
SoS:

0 ≤ pr (t)− exp(−t) ≤ t2r+1

(2r + 1)!
.



Convergence analysis: sketch of proof

I Let a be a global minimizer of f in K .

I Want: A SoS polynomial h of degree 2r which ”looks like” the
delta function at a.

I Idea: Approximate the Gaussian distribution centered at a with
(suitable) variance σ:

Ga(x) =
1

(2πσ2)n/2
exp

(
−‖x − a‖2

2σ2

)
I by its truncation of its Taylor expansion at degree 2r :

Hr ,a(x) =
1

(2πσ2)n/2

2r∑
k=0

1

k!

(
−‖x − a‖2

2σ2

)k

.

I Fact: Hr ,a(x) is a SoS polynomial of degree 4r , because the

univariate polynomial pr (t) =
∑2r

k=0
(−t)k

k! is nonnegative and thus
SoS:

0 ≤ pr (t)− exp(−t) ≤ t2r+1

(2r + 1)!
.



Convergence analysis: sketch of proof

I Let a be a global minimizer of f in K .

I Want: A SoS polynomial h of degree 2r which ”looks like” the
delta function at a.

I Idea: Approximate the Gaussian distribution centered at a with
(suitable) variance σ:

Ga(x) =
1

(2πσ2)n/2
exp

(
−‖x − a‖2

2σ2

)
I by its truncation of its Taylor expansion at degree 2r :

Hr ,a(x) =
1

(2πσ2)n/2

2r∑
k=0

1

k!

(
−‖x − a‖2

2σ2

)k

.

I Fact: Hr ,a(x) is a SoS polynomial of degree 4r ,

because the

univariate polynomial pr (t) =
∑2r

k=0
(−t)k

k! is nonnegative and thus
SoS:

0 ≤ pr (t)− exp(−t) ≤ t2r+1

(2r + 1)!
.



Convergence analysis: sketch of proof

I Let a be a global minimizer of f in K .

I Want: A SoS polynomial h of degree 2r which ”looks like” the
delta function at a.

I Idea: Approximate the Gaussian distribution centered at a with
(suitable) variance σ:

Ga(x) =
1

(2πσ2)n/2
exp

(
−‖x − a‖2

2σ2

)
I by its truncation of its Taylor expansion at degree 2r :

Hr ,a(x) =
1

(2πσ2)n/2

2r∑
k=0

1

k!

(
−‖x − a‖2

2σ2

)k

.

I Fact: Hr ,a(x) is a SoS polynomial of degree 4r , because the

univariate polynomial pr (t) =
∑2r

k=0
(−t)k

k! is nonnegative and thus
SoS:

0 ≤ pr (t)− exp(−t)

≤ t2r+1

(2r + 1)!
.



Convergence analysis: sketch of proof

I Let a be a global minimizer of f in K .

I Want: A SoS polynomial h of degree 2r which ”looks like” the
delta function at a.

I Idea: Approximate the Gaussian distribution centered at a with
(suitable) variance σ:

Ga(x) =
1

(2πσ2)n/2
exp

(
−‖x − a‖2

2σ2

)
I by its truncation of its Taylor expansion at degree 2r :

Hr ,a(x) =
1

(2πσ2)n/2

2r∑
k=0

1

k!

(
−‖x − a‖2

2σ2

)k

.

I Fact: Hr ,a(x) is a SoS polynomial of degree 4r , because the

univariate polynomial pr (t) =
∑2r

k=0
(−t)k

k! is nonnegative and thus
SoS:

0 ≤ pr (t)− exp(−t) ≤ t2r+1

(2r + 1)!
.



Convergence analysis

I Define the normalizing constant: c r
a

∫
K

Hr ,a(x)dx = 1.

I K is nice at a if there exist constants ηK and εK such that

Vol(Bε(a) ∩ K ) ≥ ηKVol(Bε(a)) ∀0 < ε ≤ εK .

Will be used to control the constant c r
a .

I The analysis will work when selecting: σ ∼ 1√
2r+1

I

Main result: If f has Lipschitz constant Mf and K is nice at a then∫
K

f (x)c r
aHr ,a(x)dx − fmin ≤

CKMf√
r
.
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Other measure-based upper
bounds for the hypercube:

- Handelman type densities

- Schmüdgen type densities



Using Handelman type densities for K = [0, 1]n

For K = [0, 1]n, consider the upper bound:

f
(r)

lp = min
∫
K

f (x)h(x)dx s.t. h(x) =
∑

α,β∈Nn

λα,β︸︷︷︸
≥0

xα(1− x)β

︸ ︷︷ ︸
degree =r

,
∫
K

h(x)dx = 1.

Theorem (De Klerk-Lasserre-L-Sun 2015)

I f
(r)

lp needs O(nr ) elementary computations:

f
(r)

lp = min
|α+β|=r

∫
K

f (x)xα(1− x)βdx∫
K

xα(1− x)βdx

I Convergence rate: For r ≥ r0

f
(r)

lp − fmin ≤
Cf√

r
, ≤ C ′f

r
if f has a rational minimizer.

 Link to the beta distribution
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Motzkin polynomial:
f (x , y) = (4x−2)4(4y−2)2 +(4x−2)2(4y−2)4−3(4x−2)2(4y−2)2 +1

over K = [0, 1]2: Handelman-type densities (deg 24, 50) & SOS (deg 24)
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Using Schmüdgen type densities for K = [−1, 1]n

For K = [−1, 1]n consider the upper bound:

f
(r)

sosS = min
∫
K

f (x)h(x)dµn s.t. h(x) =
∑
I⊆[n]

σI︸︷︷︸
SoS

(1− x2)I

︸ ︷︷ ︸
degree ≤r

,

∫
K

h(x)dµn = 1

where dµn =
(∏n

i=1 π
√

1− xi
)−1

dx .

Theorem (De Klerk-Hess-L 2016)

I f
(r)

sosS can be computed as generalized eigenvalue problem:

f
(r)

sosS = min
I⊆[n]

{
max
λ

λ s.t. A(I ) − λB(I ) � 0

}
.

I Convergence rate: For r ≥ r0

f
(r)

sosS − fmin ≤
Cf

r 2
.
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Using Schmüdgen type densities for K = [−1, 1]n

For K = [−1, 1]n consider the upper bound:

f
(r)

sosS = min
∫
K

f (x)h(x)dµn s.t. h(x) =
∑
I⊆[n]

σI︸︷︷︸
SoS

(1− x2)I

︸ ︷︷ ︸
degree ≤r

,

∫
K

h(x)dµn = 1

where dµn =
(∏n

i=1 π
√

1− xi
)−1

dx .

Theorem (De Klerk-Hess-L 2016)

I f
(r)

sosS can be computed as generalized eigenvalue problem:

f
(r)

sosS = min
I⊆[n]

{
max
λ

λ s.t. A(I ) − λB(I ) � 0

}
.

I Convergence rate: For r ≥ r0

f
(r)

sosS − fmin ≤
Cf

r 2
.
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Motzkin polynomial: f (x , y) = 64(x4y 2 + x2y 4)− 48x2y 2 + 1

over K = [−1, 1]2

Optimal Schmüdgen type densities of degree 12, 16:
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Key idea: use the Polynomial Kernel Method

Following [Weisse-Alvermann-Fehske 2006] use approximations of the
delta function at a by taking its convolution with the Jackson kernel:

δ
(r)
a (x) = 1 + 2

∑r
k=1 g

(r)
k Tk(a)Tk(x)

I Tk(x) = cos(k arccos x): Tchebyshev polynomials  orthogonal

basis of R[x ] for inner product: 〈f , g〉 =
∫ 1

−1
f (x)g(x)dµ1.

I ϑr = π
r+2 , g

(r)
k = 1

r+2 ((r + 2− k) cos(kϑr ) + sin(kϑr )
sinϑr

cosϑr ), so that:

I δ
(r)
a (x) is a polynomial (of degree r) density for µ1 on [−1, 1].

Hence: δ
(r)
a (x) = σ0 + σ1(1− x2), with σ0, σ1 SoS of degree ≤ r .

I For k = 1 |g (r)
1 − 1| = O(1/r 2).

 rate of convergence in 1/r 2 for f
(r)

sosS.
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Following [Weisse-Alvermann-Fehske 2006] use approximations of the
delta function at a by taking its convolution with the Jackson kernel:

δ
(r)
a (x) = 1 + 2

∑r
k=1 g

(r)
k Tk(a)Tk(x)

I Tk(x) = cos(k arccos x): Tchebyshev polynomials  orthogonal

basis of R[x ] for inner product: 〈f , g〉 =
∫ 1

−1
f (x)g(x)dµ1.

I ϑr = π
r+2 , g

(r)
k = 1

r+2 ((r + 2− k) cos(kϑr ) + sin(kϑr )
sinϑr

cosϑr ), so that:

I δ
(r)
a (x) is a polynomial (of degree r) density for µ1 on [−1, 1].

Hence: δ
(r)
a (x) = σ0 + σ1(1− x2), with σ0, σ1 SoS of degree ≤ r .

I For k = 1 |g (r)
1 − 1| = O(1/r 2).

 rate of convergence in 1/r 2 for f
(r)

sosS.



Kernel approximations δ
(r)
0 (x) of the Dirac at degree r = 8, 16, 32, 64:

−1 −0.5 0 0.5
0

1

2

3

4

5

6

7

8

9

x

δ
(r)
0 (x)

π
√

1−x2
∼ 1√

2πσ2
exp(− x2

2σ2 ), with σ ∼ π
r+2 .



Concluding remarks

I Discrepancy between theory and practice for the upper bounds:

r Matyas Three-Hump Camel Motzkin

Value Time (sec.) Value Time (sec.) Value Time (sec.)

2 8.26667 0.000739 265.774 0.000742 4.2 0.000719

6 4.28172 0.000072 29.0005 0.000066 1.06147 0.000080

12 2.99563 0.000263 4.43983 0.000263 0.801069 0.000208

18 1.83356 0.000655 2.55032 0.000586 0.565553 0.000766

24 1.11785 0.001753 1.2775 0.001693 0.406076 0.001712

30 0.8524 0.002270 1.0185 0.002936 0.3004 0.002351

36 0.5760 0.005510 0.7113 0.004882 0.2300 0.006060

40 0.4815 0.006975 0.6064 0.007031 0.1817 0.007686

Matyas: f = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2, K = [−10, 10]2.

Three-Hump Camel: f = 2x2
1 − 1.05x4

1 + 1
6 x6

1 + x1x2 + x2
2 , K = [−5, 5]2.

Motzkin: f = x4
1 x2

2 + x2
1 x4

2 − 3x2
1 x2

2 + 1, K = [−2, 2]2.

fmin = 0, bounds f
(r)

sos with SoS density.
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Concluding remarks

I Discrepancy between theory and practice for the upper bounds,

and also for the lower vs. upper bounds:

Better theoretical convergence results for the upper bounds, but
slower in practice...

I Problem: Show better convergence rates for the lower bounds.

New techniques needed ...
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Concluding remarks

I One can use the upper bounds to generate good feasible solutions
using sampling.

r f
(r)
sos Mean Variance Minimum Sample Size

2 265.774
216.773 177142.0 0.106854 20
261.23 193466.0 0.11705 1000

4 29.0005
28.0344 2964.85 1.1718 20
27.712 6712.8 0.014255 1000

14 4.43983
3.96711 20.3193 0.260331 20
3.7911 57.847 0.0076111 1000

22 1.71275
1.30757 1.90985 0.0320489 20
1.6379 7.2518 0.0021144 1000

24 1.27749
0.841194 0.914514 0.0369565 20
1.2105 2.3 0.0005154 1000

Uniform Sample
304.032 163021.0 1.65885 20
243.216 183724.0 0.00975034 1000

SoS upper bounds for the Three-Hamp Camel function:

f = 2x2
1 − 1.05x4

1 + 1
6 x6

1 + x1x2 + x2
2 over K = [−5, 5]2.



Thank you
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I Improved convergence rates for Lasserre-type hierarchies of upper bounds
for box-constrained polynomial optimization. With E. de Klerk, R. Hess,
arXiv:1603.03329.

I Bound-constrained polynomial optimization using only elementary
calculations. With E. de Klerk, J. Lasserre and Z. Sun, arXiv:1507.04404.

I Convergence analysis for Lasserre’s measure-based hierarchy of upper
bounds for polynomial optimization. With E. de Klerk and Z. Sun,
arXiv:1411.6867

I On the convergence rate of grid search for polynomial optimization over
the simplex. With E. de Klerk, Z. Sun, J. Vera, Opt. Letters, 2016.

I An alternative proof of a PTAS for fixed-degree polynomial optimization
over the simplex. With E. de Klerk and Z. Sun. Math.Prog. 2014.

I A PTAS for the minimization of polynomials of fixed degree over the
simplex. With E. De Klerk and P. Parrilo. TCS, 2006.



Optimization over the unit sphere

SOS lower bounds:

f
(r)
sosS = sup λ s.t. f (x)− λ = σ0︸︷︷︸

SOS of degree 2r

+u(1−
n∑

i=1

x2
i ).

Theorem
Let f be a homogeneous polynomial of even degree.

I [Faybusovich 2003] fmin − f
(r)
sosS = O( 1

r ) for r = O(n).

I In addition, Doherty-Wehner (2013) construct measure-based upper
bounds with the same performance guarantee.

I Parrilo-Wehner announced convergence in O( 1
r2 ) for both upper and

lower bounds.


