Semidefinite hierarchies for polynomial optimization

Monique Laurent

Journées SMAI-MODE 2016, Toulouse

Semidefinite hierarchies for polynomial optimization

Monique Laurent

Journées SMAI-MODE 2016, Toulouse

Based on joint works with Etienne de Klerk (Tilburg), Zhao Sun (Montreal), Jean Lasserre, Roxana Hess (Toulouse), Pablo Parrilo (MIT)

Polynomial optimization

Minimize a polynomial function f over a region $K = \{x \in \mathbb{R}^n : g_1(x) \ge 0, \dots, g_m(x) \ge 0\}$ defined by polynomial inequalities

Compute: $f_{\min} = \min_{x \in K} f(x)$

This is a hard problem, even for simple sets K like

the standard simplex

$$\Delta_n = \{x \in \mathbb{R}^n : x_1, \ldots, x_n \ge 0, \sum_{l=1}^n x_l = 1\}$$

• the hypercube $Q_n = [0, 1]^n$

the unit sphere

$$S^{n-1} = \{x \in \mathbb{R}^n : \sum_{i=1}^n x_i^2 = 1\}$$

It captures hard combinatorial optimization problems like computing the stability number $\alpha(G)$ and Max-Cut.

Polynomial optimization formulations for $\alpha(G)$

Optimization over the simplex:

[Motzkin-Straus 1965]

$$\frac{1}{\alpha(G)} = \min x^{T}(I + A_{G})x \text{ s.t. } \sum_{v \in V} x_{v} = 1, x_{v} \ge 0 \ (v \in V)$$

Optimization over the hypercube: [Park-Hong 2011]

$$\alpha(G) = \max \sum_{u \in V} x_u - \sum_{uv \in E} x_u x_v \text{ s.t. } x \in [0, 1]^n$$

Optimization over the unit sphere:

[Nesterov 2003]

$$\frac{2\sqrt{2}}{3\sqrt{3}}\sqrt{1-\frac{1}{\alpha(G)}} = \max 2\sum_{ij\in\overline{G}} z_{ij}y_iy_j \text{ s.t. } (y,z)\in S^{n+m-1}$$

To approximate:

$$f_{\min} = \min_{x \in K} f(x), \quad \text{where } K = \{x : g_1(x) \ge 0, \dots, g_m(x) \ge 0\}$$

use LP/SDP hierarchies

[Shor (1987), Nesterov (2000), Parrilo, Lasserre (2000–)]

- Express $f_{\min} = \sup \lambda$ s.t. $f(x) \lambda \ge 0$ over K
- Replace nonnegativity by easier sufficient conditions

To approximate:

$$f_{\min} = \min_{x \in K} f(x), \quad \text{where } K = \{x : g_1(x) \ge 0, \dots, g_m(x) \ge 0\}$$

use LP/SDP hierarchies

[Shor (1987), Nesterov (2000), Parrilo, Lasserre (2000-)]

- Express $f_{\min} = \sup \lambda$ s.t. $f(x) \lambda \ge 0$ over K
- Replace nonnegativity by easier sufficient conditions

Testing whether f is nonnegative is hard, but

testing whether f is a sum-of-squares (SoS): $f = \sum_{i} g_{i}^{2}$

can be done **efficiently** using semidefinite programming (SDP)

 $f_{\min} = \min_{x \in K} f(x)$, where $K = \overline{\{x : g_1(x) \ge 0, \dots, g_m(x) \ge 0\}}$

- Express $f_{\min} = \sup \lambda$ s.t. $f(x) \lambda \ge 0$ over K
- Replace nonnegativity by easier sufficient conditions:

$$f_{\min} = \min_{x \in K} f(x), \quad \text{where } K = \{x : g_1(x) \ge 0, \dots, g_m(x) \ge 0\}$$

- Express $f_{\min} = \sup \lambda$ s.t. $f(x) \lambda \ge 0$ over K
- Replace nonnegativity by easier sufficient conditions:

(1) [LP: Handelman type]
$$f - \lambda = \sum_{\alpha \in \mathbb{N}^m} \lambda_\alpha \prod_{j=1}^m g_j^{\alpha_j}$$
, where $\lambda_\alpha \ge 0$

$$f_{\min} = \min_{x \in K} f(x), \quad \text{where } K = \{x : g_1(x) \ge 0, \dots, g_m(x) \ge 0\}$$

- Express $f_{\min} = \sup \lambda$ s.t. $f(x) \lambda \ge 0$ over K
- Replace nonnegativity by easier sufficient conditions:

(1) [LP: Handelman type]
$$f - \lambda = \sum_{\alpha \in \mathbb{N}^m} \lambda_{\alpha} \prod_{j=1}^m g_j^{\alpha_j}$$
, where $\lambda_{\alpha} \ge 0$

(2) [SoS: Schmüdgen type]
$$f - \lambda = \sum_{J \subseteq [m]} \sigma_J \prod_{j \in J} g_j$$
, where σ_J SoS

$$f_{\min} = \min_{x \in K} f(x), \quad \text{where } K = \{x : g_1(x) \ge 0, \dots, g_m(x) \ge 0\}$$

- Express $f_{\min} = \sup \lambda$ s.t. $f(x) \lambda \ge 0$ over K
- Replace nonnegativity by easier sufficient conditions:

(1) [LP: Handelman type]
$$f - \lambda = \sum_{\alpha \in \mathbb{N}^m} \lambda_{\alpha} \prod_{j=1}^m g_j^{\alpha_j}$$
, where $\lambda_{\alpha} \ge 0$

(2) [SoS: Schmüdgen type]
$$f - \lambda = \sum_{J \subseteq [m]} \sigma_J \prod_{j \in J} g_j$$
, where σ_J SoS

(3) [SoS: Putinar type] $f - \lambda = \sigma_0 + \sum_{j=1}^m \sigma_j g_j$, where σ_j SoS

$$f_{\min} = \min_{x \in K} f(x), \quad \text{where } K = \{x : g_1(x) \ge 0, \dots, g_m(x) \ge 0\}$$

- Express $f_{\min} = \sup \lambda$ s.t. $f(x) \lambda \ge 0$ over K
- Replace nonnegativity by easier sufficient conditions:

(1) [LP: Handelman type]
$$f - \lambda = \sum_{\alpha \in \mathbb{N}^m} \lambda_{\alpha} \prod_{j=1}^m g_j^{\alpha_j}$$
, where $\lambda_{\alpha} \ge 0$

(2) [SoS: Schmüdgen type]
$$f - \lambda = \sum_{J \subseteq [m]} \sigma_J \prod_{j \in J} g_j$$
, where σ_J SoS

- (3) [SoS: Putinar type] $f \lambda = \sigma_0 + \sum_{j=1}^m \sigma_j g_j$, where σ_j SoS
- Get lower bounds $\underline{f}_{lp}^{(r)}$, $\underline{f}_{sos}^{(r)}$, $\underline{f}_{sos}^{(r)}$ for f_{min} by bounding degrees: deg g^{α} , deg $(\sigma_J g^J)$, deg $(\sigma_j g_j) \leq r$.

$$f_{\min} = \min_{x \in K} f(x), \quad \text{where } K = \{x : g_1(x) \ge 0, \dots, g_m(x) \ge 0\}$$

- Express $f_{\min} = \sup \lambda$ s.t. $f(x) \lambda \ge 0$ over K
- Replace nonnegativity by easier sufficient conditions:

(1) [LP: Handelman type]
$$f - \lambda = \sum_{\alpha \in \mathbb{N}^m} \lambda_{\alpha} \prod_{j=1}^m g_j^{\alpha_j}$$
, where $\lambda_{\alpha} \ge 0$

(2) [SoS: Schmüdgen type]
$$f - \lambda = \sum_{J \subseteq [m]} \sigma_J \prod_{j \in J} g_j$$
, where σ_J SoS

- (3) [SoS: Putinar type] $f \lambda = \sigma_0 + \sum_{j=1}^m \sigma_j g_j$, where σ_j SoS
- Get lower bounds $\underline{f}_{lp}^{(r)}$, $\underline{f}_{sos}^{(r)}$, $\underline{f}_{sos}^{(r)}$ for f_{min} by bounding degrees: deg g^{α} , deg $(\sigma_J g^J)$, deg $(\sigma_j g_j) \leq r$. Clearly:

$$\{ \underline{f}_{lp}^{(r)}, \underline{f}_{sosP}^{(r)} \} \leq \underline{f}_{sosS}^{(r)} \leq f_{min}$$

Theorem

Assume K is compact and f is strictly positive on K.

Theorem

Assume K is compact and f is strictly positive on K.

(1) [Krivine-Handelman] Assume K full-dimensional polytope (all g_j have degree 1). Then $f = \sum_{\alpha \in \mathbb{N}^m} \lambda_\alpha \prod_{i=1}^m g_i^{\alpha_i}$, where $\lambda_\alpha \ge 0$.

Theorem

Assume K is compact and f is strictly positive on K.

- (1) [Krivine-Handelman] Assume K full-dimensional polytope (all g_j have degree 1). Then $f = \sum_{\alpha \in \mathbb{N}^m} \lambda_{\alpha} \prod_{j=1}^m g_j^{\alpha_j}$, where $\lambda_{\alpha} \ge 0$.
- (2) [Schmüdgen 1991] Then $f = \sum_{J \subseteq [m]} \sigma_J \prod_{j \in J} g_j$, where σ_J SoS.

Theorem

Assume K is compact and f is strictly positive on K.

- (1) [Krivine-Handelman] Assume K full-dimensional polytope (all g_j have degree 1). Then $f = \sum_{\alpha \in \mathbb{N}^m} \lambda_\alpha \prod_{j=1}^m g_j^{\alpha_j}$, where $\lambda_\alpha \ge 0$.
- (2) [Schmüdgen 1991] Then $f = \sum_{J \subseteq [m]} \sigma_J \prod_{j \in J} g_j$, where σ_J SoS.
- (3) [Putinar 1993] Assume $\{x : g_j(x) \ge 0\}$ compact for some j. Then $f = \sigma_0 + \sum_{j=1}^m \sigma_j g_j$, where σ_j SoS.

Theorem

Assume K is compact and f is strictly positive on K.

- (1) [Krivine-Handelman] Assume K full-dimensional polytope (all g_j have degree 1). Then $f = \sum_{\alpha \in \mathbb{N}^m} \lambda_{\alpha} \prod_{j=1}^m g_j^{\alpha_j}$, where $\lambda_{\alpha} \ge 0$.
- (2) [Schmüdgen 1991] Then $f = \sum_{J \subseteq [m]} \sigma_J \prod_{j \in J} g_j$, where σ_J SoS.
- (3) [Putinar 1993] Assume $\{x : g_j(x) \ge 0\}$ compact for some j. Then $f = \sigma_0 + \sum_{j=1}^m \sigma_j g_j$, where σ_j SoS.

▶ Asymptotic convergence of the lower bounds to *f*_{min}. [Lasserre 01]

Theorem

Assume K is compact and f is strictly positive on K.

- (1) [Krivine-Handelman] Assume K full-dimensional polytope (all g_j have degree 1). Then $f = \sum_{\alpha \in \mathbb{N}^m} \lambda_{\alpha} \prod_{j=1}^m g_j^{\alpha_j}$, where $\lambda_{\alpha} \ge 0$.
- (2) [Schmüdgen 1991] Then $f = \sum_{J \subseteq [m]} \sigma_J \prod_{j \in J} g_j$, where σ_J SoS.
- (3) [Putinar 1993] Assume $\{x : g_j(x) \ge 0\}$ compact for some j. Then $f = \sigma_0 + \sum_{j=1}^m \sigma_j g_j$, where σ_j SoS.
 - ▶ Asymptotic convergence of the lower bounds to *f*_{min}. [Lasserre 01]
 - Finite convergence holds generically for SoS bounds. [Nie 14]

Theorem

Assume K is compact and f is strictly positive on K.

- (1) [Krivine-Handelman] Assume K full-dimensional polytope (all g_j have degree 1). Then $f = \sum_{\alpha \in \mathbb{N}^m} \lambda_{\alpha} \prod_{j=1}^m g_j^{\alpha_j}$, where $\lambda_{\alpha} \ge 0$.
- (2) [Schmüdgen 1991] Then $f = \sum_{J \subseteq [m]} \sigma_J \prod_{j \in J} g_j$, where σ_J SoS.
- (3) [Putinar 1993] Assume $\{x : g_j(x) \ge 0\}$ compact for some j. Then $f = \sigma_0 + \sum_{j=1}^m \sigma_j g_j$, where σ_j SoS.
 - ▶ Asymptotic convergence of the lower bounds to *f*_{min}. [Lasserre 01]
 - Finite convergence holds generically for SoS bounds. [Nie 14]
 - What about the rate of convergence?

Theorem

Assume $K \subseteq (-1,1)^n$. For $f = \sum_{\alpha} f_{\alpha} x^{\alpha}$, set $L_f = \max_{\alpha} |f_{\alpha}| \frac{\alpha!}{|\alpha|!}$.

 [Schweighofer 2004] Analysis of Schmüdgen type bounds: There exists a constant c > 0 such that for any polynomial f of degree d:

$$f_{\min} - \underline{f}_{sosS}^{(r)} \le cd^4 n^{2d} L_f \frac{1}{\sqrt[c]{r}} \quad \text{for } r \ge cd^c n^{cd}.$$

Theorem

Assume $K \subseteq (-1,1)^n$. For $f = \sum_{\alpha} f_{\alpha} x^{\alpha}$, set $L_f = \max_{\alpha} |f_{\alpha}| \frac{\alpha!}{|\alpha|!}$.

 [Schweighofer 2004] Analysis of Schmüdgen type bounds: There exists a constant c > 0 such that for any polynomial f of degree d:

$$f_{\min} - \underline{f}_{sosS}^{(r)} \le cd^4 n^{2d} L_f \frac{1}{\sqrt[c]{r}} \quad \text{for } r \ge cd^c n^{cd}.$$

 [Nie-Schweighofer 2007] Analysis of Putinar type bounds: There exists a constant c' > 0 such that for any polynomial f of degree d:

$$f_{\min} - \underline{f}_{sosP}^{(r)} \leq 6d^3 n^{2d} L_f \frac{1}{\frac{c'}{\sqrt{\log \frac{r}{c'}}}} \quad \text{for } r \geq c' \exp((2d^2n^d)^{c'}).$$

Theorem

Assume $K \subseteq (-1,1)^n$. For $f = \sum_{\alpha} f_{\alpha} x^{\alpha}$, set $L_f = \max_{\alpha} |f_{\alpha}| \frac{\alpha!}{|\alpha|!}$.

 [Schweighofer 2004] Analysis of Schmüdgen type bounds: There exists a constant c > 0 such that for any polynomial f of degree d:

$$f_{\min} - \underline{f}_{sosS}^{(r)} \le cd^4 n^{2d} L_f \frac{1}{\sqrt[c]{r}} \quad \text{for } r \ge cd^c n^{cd}.$$

 [Nie-Schweighofer 2007] Analysis of Putinar type bounds: There exists a constant c' > 0 such that for any polynomial f of degree d:

$$f_{\min} - \underline{f}_{sosP}^{(r)} \leq 6d^3 n^{2d} L_f \frac{1}{\frac{c'}{\sqrt{\log \frac{r}{c'}}}} \quad \text{for } r \geq c' \exp((2d^2n^d)^{c'}).$$

Better results for some simple sets K?

Theorem

Assume $K \subseteq (-1,1)^n$. For $f = \sum_{\alpha} f_{\alpha} x^{\alpha}$, set $L_f = \max_{\alpha} |f_{\alpha}| \frac{\alpha!}{|\alpha|!}$.

 [Schweighofer 2004] Analysis of Schmüdgen type bounds: There exists a constant c > 0 such that for any polynomial f of degree d:

$$f_{\min} - \underline{f}_{sosS}^{(r)} \le cd^4 n^{2d} L_f \frac{1}{\sqrt[c]{r}} \quad \text{for } r \ge cd^c n^{cd}.$$

 [Nie-Schweighofer 2007] Analysis of Putinar type bounds: There exists a constant c' > 0 such that for any polynomial f of degree d:

$$f_{\min} - \underline{f}_{sosP}^{(r)} \leq 6d^3 n^{2d} L_f \frac{1}{\frac{c'}{\sqrt{\log \frac{r}{c'}}}} \quad \text{for } r \geq c' \exp((2d^2n^d)^{c'}).$$

Better results for some simple sets K?

Can choose c = 1 for Schmüdgen type bounds for simplex & cube.

For simple sets $K = \Delta_n$ or Q_n : minimize f over the rational grid points with given denominator r.

- ► For simple sets $K = \Delta_n$ or Q_n : minimize f over the rational grid points with given denominator r.
- ▶ For general compact sets *K*, use Lasserre idea:

$$f_{\min} = \min_{x \in K} f(x) = \min_{\mu \text{ probability measure on } K} \int_{K} f(x) \mu(dx)$$

- ► For simple sets $K = \Delta_n$ or Q_n : minimize f over the rational grid points with given denominator r.
- ▶ For general compact sets *K*, use Lasserre idea:

$$f_{\min} = \min_{x \in K} f(x) = \min_{\mu \text{ probability measure on } K} \int_{K} f(x) \mu(dx)$$

and select suitable probability measures μ over K.

► For simple sets $K = \Delta_n$ or Q_n : minimize f over the rational grid points with given denominator r.

▶ For general compact sets *K*, use Lasserre idea:

$$f_{\min} = \min_{x \in K} f(x) = \min_{\mu \text{ probability measure on } K} \int_{K} f(x) \mu(dx)$$

and select suitable probability measures μ over K.

Theorem (Lasserre 2011)

For K compact one may use sum-of-squares density functions:

$$f_{\min} = \inf \int_{\mathcal{K}} f(x)h(x)dx$$
 s.t. h SoS, $\int_{\mathcal{K}} h(x)dx = 1$.

► For simple sets $K = \Delta_n$ or Q_n : minimize f over the rational grid points with given denominator r.

▶ For general compact sets *K*, use Lasserre idea:

$$f_{\min} = \min_{x \in K} f(x) = \min_{\mu \text{ probability measure on } K} \int_{K} f(x) \mu(dx)$$

and select suitable probability measures μ over K.

Theorem (Lasserre 2011)

For K compact one may use sum-of-squares density functions:

$$f_{\min} = \inf \int_{\mathcal{K}} f(x)h(x)dx$$
 s.t. h SoS, $\int_{\mathcal{K}} h(x)dx = 1$.

Bounding degree: deg(h) $\leq 2r$, get upper bounds $\overline{f}_{sos}^{(r)}$ converging to f_{min} .

What about the rate of convergence?

► For simple sets $K = \Delta_n$ or Q_n : minimize f over the rational grid points with given denominator r.

▶ For general compact sets *K*, use Lasserre idea:

$$f_{\min} = \min_{x \in K} f(x) = \min_{\mu \text{ probability measure on } K} \int_{K} f(x) \mu(dx)$$

and select suitable probability measures μ over K.

Theorem (Lasserre 2011)

For K compact one may use sum-of-squares density functions:

$$f_{\min} = \inf \int_{\mathcal{K}} f(x)h(x)dx$$
 s.t. h SoS, $\int_{\mathcal{K}} h(x)dx = 1$.

Bounding degree: deg(h) $\leq 2r$, get upper bounds $\overline{f}_{sos}^{(r)}$ converging to f_{min} .

What about the rate of convergence?

... in $O(1/\sqrt{r})$

This talk

Analysis of the rate of convergence:

For the simplex Δ_n and the cube Q_n: regular grid upper bounds and the LP lower bounds.

► For *K* **compact**: SoS-density upper bounds.

► For the **cube** Q_n : other upper bounds (using other density functions).

POLYNOMIAL OPTIMIZATION OVER THE SIMPLEX

Upper bounds: For $r \ge 1$

$$\Delta_n(r) = \{x \in \Delta_n : rx \in \mathbb{N}^n\}$$
$$f_{\min,\Delta_n(r)} = \min_{x \in \Delta_n(r)} f(x)$$

Example: n = 3:

Upper bounds: For $r \ge 1$

$$\Delta_n(r) = \{x \in \Delta_n : rx \in \mathbb{N}^n\}$$
$$f_{\min,\Delta_n(r)} = \min_{x \in \Delta_n(r)} f(x)$$

Example: n = 3:

Let $f = \sum_{|\beta|=d} f_{\beta} x^{\beta}$ homogeneous of degree d.

Upper bounds:

$$f_{\min} \leq f_{\min,\Delta_n(r)} = \min_{x \in \Delta_n(r)} f(x)$$
Upper bounds:

$$f_{\min} \leq f_{\min,\Delta_n(r)} = \min_{x \in \Delta_n(r)} f(x) = \min_{\alpha \in \mathbb{N}^n: |\alpha| = r} f(\alpha/r)$$

Upper bounds:

$$f_{\min} \leq f_{\min,\Delta_n(r)} = \min_{x \in \Delta_n(r)} f(x) = \min_{\alpha \in \mathbb{N}^n : |\alpha| = r} f(\alpha/r) \quad (= \sum_{|\beta| = d} f_\beta \frac{\alpha^\beta}{r^d})$$

Upper bounds:

$$f_{\min} \leq f_{\min,\Delta_n(r)} = \min_{x \in \Delta_n(r)} f(x) = \min_{\alpha \in \mathbb{N}^n : |\alpha| = r} f(\alpha/r) \quad (= \sum_{|\beta| = d} f_\beta \frac{\alpha^\beta}{r^d})$$

Lower bounds:

$$f_{\min} \geq \underline{f}_{lp}^{(r)} = \sup \lambda \text{ s.t. } f(x) - \lambda = \underbrace{h(x)}_{\mathbb{R}_+[x]_r} + \underbrace{u(x)(1 - \sum_{i=1}^n x_i)}_{\mathbb{R}[x]_r}$$

Upper bounds:

$$f_{\min} \leq f_{\min,\Delta_n(r)} = \min_{x \in \Delta_n(r)} f(x) = \min_{\alpha \in \mathbb{N}^n : |\alpha| = r} f(\alpha/r) \quad (= \sum_{|\beta| = d} f_\beta \frac{\alpha^\beta}{r^d})$$

Lower bounds:

$$f_{\min} \geq \underline{f}_{lp}^{(r)} = \sup \lambda \text{ s.t. } f(x) - \lambda = \underbrace{h(x)}_{\mathbb{R}_+[x]_r} + \underbrace{u(x)(1 - \sum_{i=1}^n x_i)}_{\mathbb{R}[x]_r}$$

$$= \min_{\alpha \in \mathbb{N}^n : |\alpha| = r} \sum_{|\beta| = d} f_{\beta} \frac{\alpha^{\underline{\beta}}}{r^{\underline{d}}}.$$

where
$$r^{\underline{d}} = r(r-1)\cdots(r-d+1)$$

Upper bounds:

$$f_{\min} \leq f_{\min,\Delta_n(r)} = \min_{x \in \Delta_n(r)} f(x) = \min_{\alpha \in \mathbb{N}^n : |\alpha| = r} f(\alpha/r) \quad (= \sum_{|\beta| = d} f_\beta \frac{\alpha^\beta}{r^d})$$

Lower bounds:

$$f_{\min} \geq \underline{f}_{lp}^{(r)} = \sup \lambda \text{ s.t. } f(x) - \lambda = \underbrace{h(x)}_{\mathbb{R}_+[x]_r} + \underbrace{u(x)(1 - \sum_{i=1}^n x_i)}_{\mathbb{R}[x]_r}$$

$$= \min_{\alpha \in \mathbb{N}^n: |\alpha|=r} \sum_{|\beta|=d} f_{\beta} \frac{\alpha^{\underline{\beta}}}{r^{\underline{d}}}.$$

where $r^{\underline{d}} = r(r-1)\cdots(r-d+1)$

$$\underline{f}_{\mathrm{lp}}^{(r)} \leq f_{\mathrm{min}} \leq f_{\mathrm{min},\Delta_n(r)}$$

Theorem (De Klerk-L-Parrilo 2006)

► For any polynomial f of degree d:

$$f_{\min,\Delta_n(r)} - f_{\min}, \ f_{\min} - \underline{f}_{\mathrm{lp}}^{(r)} \leq \frac{C_d}{r} \ (f_{\max} - f_{\min}).$$

Theorem (De Klerk-L-Parrilo 2006)

► For any polynomial f of degree d:

 $f_{\min,\Delta_n(r)} - f_{\min}, \ f_{\min} - \underline{f}_{\ln}^{(r)} \leq \frac{C_d}{r} \ (f_{\max} - f_{\min}).$

• Can compute the bounds via $|\Delta_n(r)| = O(n^r)$ function evaluations.

Theorem (De Klerk-L-Parrilo 2006)

► For any polynomial f of degree d:

$$f_{\min,\Delta_n(r)} - f_{\min}, \ f_{\min} - \underline{f}_{\ln}^{(r)} \leq \frac{C_d}{r} \ (f_{\max} - f_{\min}).$$

• Can compute the bounds via $|\Delta_n(r)| = O(n^r)$ function evaluations.

• Get **PTAS** for minimizing a polynomial of fixed degree d over Δ_n .

Theorem (De Klerk-L-Parrilo 2006)

► For any polynomial f of degree d:

$$f_{\min,\Delta_n(r)} - f_{\min}, \ f_{\min} - \underline{f}_{\ln}^{(r)} \leq \frac{C_d}{r} \ (f_{\max} - f_{\min}).$$

• Can compute the bounds via $|\Delta_n(r)| = O(n^r)$ function evaluations.

• Get **PTAS** for minimizing a polynomial of fixed degree d over Δ_n .

Convergence rate in 1/r is **tight** for the **PTAS** property:

Theorem (De Klerk-L-Parrilo 2006)

For any polynomial f of degree d:

$$f_{\min,\Delta_n(r)} - f_{\min}, \ f_{\min} - \underline{f}_{\ln}^{(r)} \leq \frac{C_d}{r} \ (f_{\max} - f_{\min}).$$

- Can compute the bounds via $|\Delta_n(r)| = O(n^r)$ function evaluations.
- Get **PTAS** for minimizing a polynomial of fixed degree d over Δ_n .

Convergence rate in 1/r is **tight** for the **PTAS property:** If $f = \sum_{i} x_i^2$ and $r = \frac{3n}{2}$ then: $f_{\min,\Delta_n(r)} - f_{\min} = \frac{1}{6r-9}(f_{\max} - f_{\min})$

Theorem (De Klerk-L-Parrilo 2006)

For any polynomial f of degree d:

$$f_{\min,\Delta_n(r)} - f_{\min}, \ f_{\min} - \underline{f}_{\ln}^{(r)} \leq \frac{C_d}{r} \ (f_{\max} - f_{\min}).$$

- Can compute the bounds via $|\Delta_n(r)| = O(n^r)$ function evaluations.
- Get **PTAS** for minimizing a polynomial of fixed degree d over Δ_n .

Convergence rate in 1/r is **tight** for the **PTAS property:** If $f = \sum_i x_i^2$ and $r = \frac{3n}{2}$ then: $f_{\min,\Delta_n(r)} - f_{\min} = \frac{1}{6r-9}(f_{\max} - f_{\min}) \leq \frac{n}{4r^2}$.

Theorem (De Klerk-L-Parrilo 2006)

► For any polynomial f of degree d:

$$f_{\min,\Delta_n(r)} - f_{\min}, \ f_{\min} - \underline{f}_{\ln}^{(r)} \leq \frac{C_d}{r} \ (f_{\max} - f_{\min}).$$

- Can compute the bounds via $|\Delta_n(r)| = O(n^r)$ function evaluations.
- Get **PTAS** for minimizing a polynomial of fixed degree d over Δ_n .

Convergence rate in 1/r is **tight** for the **PTAS property:** If $f = \sum_i x_i^2$ and $r = \frac{3n}{2}$ then: $f_{\min,\Delta_n(r)} - f_{\min} = \frac{1}{6r-9}(f_{\max} - f_{\min}) \le \frac{n}{4r^2}$.

Theorem

• [De Klerk-L-Sun-Vera 2015]
$$f_{\min,\Delta_n(r)} - f_{\min} \leq \frac{C_f}{r^2}$$
.

Theorem (De Klerk-L-Parrilo 2006)

► For any polynomial f of degree d:

$$f_{\min,\Delta_n(r)} - f_{\min}, \ f_{\min} - \underline{f}_{\ln}^{(r)} \leq \frac{C_d}{r} \ (f_{\max} - f_{\min}).$$

- Can compute the bounds via $|\Delta_n(r)| = O(n^r)$ function evaluations.
- Get **PTAS** for minimizing a polynomial of fixed degree d over Δ_n .

Convergence rate in 1/r is **tight** for the **PTAS property:** If $f = \sum_{i} x_i^2$ and $r = \frac{3n}{2}$ then: $f_{\min,\Delta_n(r)} - f_{\min} = \frac{1}{6r-9}(f_{\max} - f_{\min}) \leq \frac{n}{4r^2}$.

Theorem

- [De Klerk-L-Sun-Vera 2015] $f_{\min,\Delta_n(r)} f_{\min} \leq \frac{C_f}{r^2}$.
- [De Klerk-L-Sun 2015] May choose $C_f = mC_d(f_{max} f_{min})$, if f has a rational minimizer with denominator m.

Key idea for the 1/r convergence rate of $f_{\min,\Delta_n(r)}$

▶ Use the **Bernstein approximation** of *f* of order *r*:

$$B_r(f)(x) = \sum_{\alpha \in \mathbb{N}^n : |\alpha| = r} f(\frac{\alpha}{r}) \frac{r!}{\alpha!} x^{\alpha}.$$

So $B_r(f)(x)$ is the **average value** of f over the grid points in $\Delta_n(r)$.

$$f_{\min,\Delta_n(r)} - f_{\min} \leq \min_{x \in \Delta_n} B_r(f)(x) - f_{\min}$$

Key idea for the 1/r convergence rate of $f_{\min,\Delta_n(r)}$

▶ Use the **Bernstein approximation** of *f* of order *r*:

$$B_r(f)(x) = \sum_{\alpha \in \mathbb{N}^n : |\alpha| = r} f(\frac{\alpha}{r}) \frac{r!}{\alpha!} x^{\alpha}.$$

So $B_r(f)(x)$ is the **average value** of f over the grid points in $\Delta_n(r)$.

$$f_{\min,\Delta_n(r)} - f_{\min} \leq \min_{x \in \Delta_n} B_r(f)(x) - f_{\min} \leq \max_{x \in \Delta_n} B_r(f)(x) - f(x)$$

Using properties of Bernstein approximations, one can show:

$$\max_{x\in\Delta_n} B_r(f)(x) - f(x) \leq \frac{C_d}{r}.$$

[De Klerk-L-Sun 2014]

POLYNOMIAL OPTIMIZATION OVER THE HYPERCUBE

$$f_{\min} \leq f_{\min,Q_n(r)} = \min_{x \in Q_n(r)} f(x) = \min_{\alpha \in \mathbb{N}^n : \alpha_i \leq r} f(\alpha/r)$$

$$f_{\min} \leq f_{\min,Q_n(r)} = \min_{x \in Q_n(r)} f(x) = \min_{\alpha \in \mathbb{N}^n : \alpha_i \leq r} f(\alpha/r)$$

Lower bounds:

$$f_{\min} \geq \underline{f}_{lp}^{(r)} = \sup \lambda \text{ s.t. } f(x) - \lambda = \sum_{\alpha, \gamma \in \mathbb{N}^n} \underbrace{\lambda_{\alpha, \gamma}}_{\geq 0} x^{\alpha} (1-x)^{\gamma}$$

$$f_{\min} \leq f_{\min,Q_n(r)} = \min_{x \in Q_n(r)} f(x) = \min_{\alpha \in \mathbb{N}^n : \alpha_i \leq r} f(\alpha/r)$$

Lower bounds:

$$f_{\min} \geq \underline{f}_{lp}^{(r)} = \sup \lambda \text{ s.t. } f(x) - \lambda = \sum_{\alpha, \gamma \in \mathbb{N}^n} \underbrace{\lambda_{\alpha, \gamma}}_{\geq 0} x^{\alpha} (1-x)^{\gamma}$$

degree $\leq r$

$$\underline{f}_{\mathrm{lp}}^{(r)} \leq f_{\mathrm{min}} \leq f_{\mathrm{min},Q_r(d)}$$

$$f_{\min} \leq f_{\min,Q_n(r)} = \min_{x \in Q_n(r)} f(x) = \min_{\alpha \in \mathbb{N}^n : \alpha_i \leq r} f(\alpha/r)$$

Lower bounds:

$$f_{\min} \geq \underline{f}_{lp}^{(r)} = \sup \lambda \text{ s.t. } f(x) - \lambda = \sum_{\alpha, \gamma \in \mathbb{N}^n} \underbrace{\lambda_{\alpha, \gamma}}_{\geq 0} x^{\alpha} (1-x)^{\gamma}$$

degree $\leq r$

$$\underline{f}_{\mathrm{lp}}^{(r)} \leq f_{\mathrm{min}} \leq f_{\mathrm{min},Q_r(d)}$$

Theorem

• [De Klerk-L 2010] For $r \ge dn$ $f_{\min} - \frac{f_{\ln}^{(r)}}{f_{\ln}} \le {d+1 \choose 3} \frac{n^{d+1}L_f}{r}$.

$$f_{\min} \leq f_{\min,Q_n(r)} = \min_{x \in Q_n(r)} f(x) = \min_{\alpha \in \mathbb{N}^n : \alpha_i \leq r} f(\alpha/r)$$

Lower bounds:

$$f_{\min} \geq \underline{f}_{lp}^{(r)} = \sup \lambda \text{ s.t. } f(x) - \lambda = \sum_{\alpha, \gamma \in \mathbb{N}^n} \underbrace{\lambda_{\alpha, \gamma}}_{\geq 0} x^{\alpha} (1-x)^{\gamma}$$

degree $\leq r$

$$\underline{f}_{lp}^{(r)} \leq f_{min} \leq f_{min,Q_r(d)}$$

Theorem

- [De Klerk-L 2010] For $r \ge dn$ $f_{\min} \frac{f_{\ell}^{(r)}}{f_{\ell}} \le {d+1 \choose 3} \frac{n^{d+1}L_f}{r}$.
- [De Klerk-Lasserre-L-Sun 2015] For $r \ge 1$ $f_{\min,Q_n(r)} f_{\min} \le \frac{C_f}{r^2}$.

$$f_{\min} \leq f_{\min,Q_n(r)} = \min_{x \in Q_n(r)} f(x) = \min_{\alpha \in \mathbb{N}^n : \alpha_i \leq r} f(\alpha/r)$$

Lower bounds:

$$f_{\min} \geq \underline{f}_{lp}^{(r)} = \sup \lambda \text{ s.t. } f(x) - \lambda = \sum_{\alpha, \gamma \in \mathbb{N}^n} \underbrace{\lambda_{\alpha, \gamma}}_{\geq 0} x^{\alpha} (1-x)^{\gamma}$$

degree $\leq r$

$$\underline{f}_{lp}^{(r)} \leq f_{min} \leq f_{min,Q_r(d)}$$

Theorem

• [De Klerk-L 2010] For $r \ge dn$ $f_{\min} - \frac{f_{\ln}^{(r)}}{2} \le {\binom{d+1}{3}} \frac{n^{d+1}L_f}{r}$.

▶ [De Klerk-Lasserre-L-Sun 2015] For $r \ge 1$ $f_{\min,Q_n(r)} - f_{\min} \le \frac{C_r}{r^2}$. but $|Q_n(r)| = (r+1)^n$...

Measure-based upper bounds

Lasserre (2011) proved: For K compact

 $f_{\min} = \min_{x \in K} f(x) = \min_{\mu \text{ probability measure on } K} \int_{K} f(x) d\mu$ $= \inf_{K} f(x) h(x) dx \text{ s.t. } h \text{ SoS}, \ \int_{K} h(x) dx = 1.$

Lasserre (2011) proved: For K compact

$$f_{\min} = \min_{x \in K} f(x) = \min_{\mu \text{ probability measure on } K} \int_{K} f(x) d\mu$$
$$= \inf_{K} f(x) h(x) dx \text{ s.t. } h \text{ SoS}, \ \int_{K} h(x) dx = 1.$$

 $\overline{f}_{sos}^{(r)} = \min \int_{\mathcal{K}} f(x)h(x)dx$ s.t. h SoS, deg $(h) \leq r$, $\int_{\mathcal{K}} h(x)dx = 1$.

Lasserre (2011) proved: For K compact

$$f_{\min} = \min_{x \in K} f(x) = \min_{\mu \text{ probability measure on } K} \int_{K} f(x) d\mu$$
$$= \inf_{K} f(x) h(x) dx \text{ s.t. } h \text{ SoS}, \ \int_{K} h(x) dx = 1.$$

$$\overline{f}_{sos}^{(r)} = \min \int_{K} f(x)h(x)dx$$
 s.t. $h \operatorname{SoS}, \operatorname{deg}(h) \leq r, \int_{K} h(x)dx = 1.$

- Compute $\overline{f}_{sos}^{(r)}$ as generalized eigenvalue problem
- Need moments $\int_{K} x^{\alpha} dx$:

Lasserre (2011) proved: For K compact

$$f_{\min} = \min_{x \in K} f(x) = \min_{\mu \text{ probability measure on } K} \int_{K} f(x) d\mu$$
$$= \inf_{K} f(x) h(x) dx \text{ s.t. } h \text{ SoS}, \ \int_{K} h(x) dx = 1.$$

$$\overline{f}_{sos}^{(r)} = \min \int_{\mathcal{K}} f(x)h(x)dx$$
 s.t. h SoS, deg $(h) \leq r$, $\int_{\mathcal{K}} h(x)dx = 1$.

- Compute $\overline{f}_{sos}^{(r)}$ as generalized eigenvalue problem
- ▶ Need moments $\int_{K} x^{\alpha} dx$: known for simplex, hypercube, sphere,...

Lasserre (2011) proved: For K compact

$$f_{\min} = \min_{x \in K} f(x) = \min_{\mu \text{ probability measure on } K} \int_{K} f(x) d\mu$$
$$= \inf_{K} f(x) h(x) dx \text{ s.t. } h \text{ SoS}, \ \int_{K} h(x) dx = 1.$$

$$\overline{f}_{sos}^{(r)} = \min \int_{\mathcal{K}} f(x)h(x)dx$$
 s.t. h SoS, deg $(h) \le r$, $\int_{\mathcal{K}} h(x)dx = 1$.

- Compute $\overline{f}_{sos}^{(r)}$ as generalized eigenvalue problem
- ▶ Need moments $\int_{K} x^{\alpha} dx$: known for simplex, hypercube, sphere,...

Theorem (De Klerk-L-Sun 2015)

Assume K is compact and 'nice' (e.g. convex body) and f has Lipschitz constant M_f . There exist constants $C_K > 0$ and $r_K \ge 1$ such that

$$\overline{f}_{sos}^{(r)} - f_{\min} \leq \frac{C_{\kappa}M_f}{\sqrt{r}} \qquad \forall r \geq r_{\kappa}$$

Example: Motzkin polynomial on $K = [-2, 2]^2$

 $f(x_1, x_2) = x_1^4 x_2^2 + x_1^2 x_2^4 - 3x_1^2 x_2^2 + 1$ Global minimizers: (-1, -1), (-1, 1), (1, -1), (1, 1).

Convergence analysis: sketch of proof

- Let \mathbf{a} be a global minimizer of f in K.
- ► Want: A SoS polynomial *h* of degree 2*r* which "looks like" the delta function at **a**.

Convergence analysis: sketch of proof

- Let **a** be a global minimizer of *f* in *K*.
- ▶ Want: A SoS polynomial *h* of degree 2*r* which "looks like" the delta function at **a**.
- Idea: Approximate the Gaussian distribution centered at a with (suitable) variance σ:

$$\mathsf{G}_{\mathsf{a}}(x) = rac{1}{(2\pi\sigma^2)^{n/2}}\exp\left(-rac{\|x-\mathbf{a}\|^2}{2\sigma^2}
ight)$$

Convergence analysis: sketch of proof

- Let **a** be a global minimizer of *f* in *K*.
- ▶ Want: A SoS polynomial *h* of degree 2*r* which "looks like" the delta function at **a**.
- Idea: Approximate the Gaussian distribution centered at a with (suitable) variance σ:

$$G_{\mathbf{a}}(\mathbf{x}) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{\|\mathbf{x}-\mathbf{a}\|^2}{2\sigma^2}\right)$$

by its truncation of its Taylor expansion at degree 2*r*:

$$H_{r,\mathbf{a}}(x) = \frac{1}{(2\pi\sigma^2)^{n/2}} \sum_{k=0}^{2r} \frac{1}{k!} \left(-\frac{\|x-\mathbf{a}\|^2}{2\sigma^2} \right)^k$$
Convergence analysis: sketch of proof

- Let \mathbf{a} be a global minimizer of f in K.
- ▶ Want: A SoS polynomial *h* of degree 2*r* which "looks like" the delta function at **a**.
- Idea: Approximate the Gaussian distribution centered at a with (suitable) variance σ:

$$G_{\boldsymbol{a}}(\boldsymbol{x}) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{\|\boldsymbol{x}-\boldsymbol{a}\|^2}{2\sigma^2}\right)$$

by its **truncation of its Taylor expansion at degree** 2*r*:

$$H_{r,\mathbf{a}}(x) = \frac{1}{(2\pi\sigma^2)^{n/2}} \sum_{k=0}^{2r} \frac{1}{k!} \left(-\frac{\|x-\mathbf{a}\|^2}{2\sigma^2} \right)^k$$

Fact: $H_{r,a}(x)$ is a SoS polynomial of degree 4r,

Convergence analysis: sketch of proof

- Let **a** be a global minimizer of *f* in *K*.
- ▶ Want: A SoS polynomial *h* of degree 2*r* which "looks like" the delta function at **a**.
- Idea: Approximate the Gaussian distribution centered at a with (suitable) variance σ:

$$G_{\boldsymbol{a}}(\boldsymbol{x}) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{\|\boldsymbol{x}-\boldsymbol{a}\|^2}{2\sigma^2}\right)$$

by its **truncation of its Taylor expansion at degree** 2*r*:

$$H_{r,\mathbf{a}}(x) = \frac{1}{(2\pi\sigma^2)^{n/2}} \sum_{k=0}^{2r} \frac{1}{k!} \left(-\frac{\|x-\mathbf{a}\|^2}{2\sigma^2} \right)^k$$

▶ Fact: $H_{r,a}(x)$ is a SoS polynomial of degree 4r, because the univariate polynomial $p_r(t) = \sum_{k=0}^{2r} \frac{(-t)^k}{k!}$ is nonnegative and thus SoS:

$$0 \leq p_r(t) - \exp(-t)$$

Convergence analysis: sketch of proof

- Let **a** be a global minimizer of *f* in *K*.
- ▶ Want: A SoS polynomial *h* of degree 2*r* which "looks like" the delta function at **a**.
- Idea: Approximate the Gaussian distribution centered at a with (suitable) variance σ:

$$G_{\boldsymbol{a}}(\boldsymbol{x}) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{\|\boldsymbol{x}-\boldsymbol{a}\|^2}{2\sigma^2}\right)$$

by its **truncation of its Taylor expansion at degree** 2*r*:

$$H_{r,\mathbf{a}}(x) = \frac{1}{(2\pi\sigma^2)^{n/2}} \sum_{k=0}^{2r} \frac{1}{k!} \left(-\frac{\|x-\mathbf{a}\|^2}{2\sigma^2} \right)^k$$

▶ Fact: $H_{r,a}(x)$ is a SoS polynomial of degree 4r, because the univariate polynomial $p_r(t) = \sum_{k=0}^{2r} \frac{(-t)^k}{k!}$ is nonnegative and thus SoS:

$$0 \le p_r(t) - \exp(-t) \le \frac{t^{2r+1}}{(2r+1)!}$$

• Define the normalizing constant: $c_a^r \int_K H_{r,a}(x) dx = 1$.

- Define the normalizing constant: $c_{a}^{r} \int_{K} H_{r,a}(x) dx = 1$.
- *K* is **nice at a** if there exist constants η_K and ϵ_K such that

 $\mathsf{Vol}(B_{\epsilon}(\mathbf{a}) \cap K) \geq \eta_{K} \mathsf{Vol}(B_{\epsilon}(\mathbf{a})) \quad \forall \mathbf{0} < \epsilon \leq \epsilon_{K}.$

Will be used to control the constant c_a^r .

- Define the normalizing constant: $c_a^r \int_K H_{r,a}(x) dx = 1$.
- K is **nice at a** if there exist constants η_K and ϵ_K such that

 $\operatorname{Vol}(B_{\epsilon}(\mathbf{a}) \cap K) \geq \eta_{K} \operatorname{Vol}(B_{\epsilon}(\mathbf{a})) \quad \forall \mathbf{0} < \epsilon \leq \epsilon_{K}.$

Will be used to control the constant c_a^r .

▶ The analysis will work when selecting: $\sigma \sim \frac{1}{\sqrt{2r+1}}$

• Define the normalizing constant: $c_{a}^{r} \int_{K} H_{r,a}(x) dx = 1$.

• *K* is **nice at a** if there exist constants η_K and ϵ_K such that

 $\operatorname{Vol}(B_{\epsilon}(\mathbf{a}) \cap K) \geq \eta_{K} \operatorname{Vol}(B_{\epsilon}(\mathbf{a})) \quad \forall 0 < \epsilon \leq \epsilon_{K}.$

Will be used to control the constant c_a^r .

• The analysis will work when selecting:

$$\sigma \sim \frac{1}{\sqrt{2r+1}}$$

Main result: If f has Lipschitz constant M_f and K is **nice at a** then

$$\int_{K} f(x) c_{\mathbf{a}}^{r} H_{r,\mathbf{a}}(x) dx - f_{\min} \leq \frac{C_{K} M_{f}}{\sqrt{r}}.$$

OTHER MEASURE-BASED UPPER BOUNDS FOR THE HYPERCUBE:

- HANDELMAN TYPE DENSITIES

- SCHMÜDGEN TYPE DENSITIES

For $K = [0, 1]^n$, consider the upper bound:

$$\overline{f}_{lp}^{(r)} = \min \int_{\mathcal{K}} f(x)h(x)dx \quad \text{s.t.} \quad h(x) = \sum_{\alpha,\beta \in \mathbb{N}^n} \underbrace{\lambda_{\alpha,\beta}}_{\geq 0} x^{\alpha}(1-x)^{\beta}, \int_{\mathcal{K}} h(x)dx = 1.$$

For $K = [0, 1]^n$, consider the upper bound:

$$\overline{f}_{1p}^{(r)} = \min \int_{\mathcal{K}} f(x)h(x)dx \quad \text{s.t.} \quad h(x) = \sum_{\alpha,\beta \in \mathbb{N}^n} \underbrace{\lambda_{\alpha,\beta}}_{\geq 0} x^{\alpha}(1-x)^{\beta}, \int_{\mathcal{K}} h(x)dx = 1.$$

Theorem (De Klerk-Lasserre-L-Sun 2015)

• $\overline{f}_{lp}^{(r)}$ needs $O(n^r)$ elementary computations:

$$\overline{f}_{lp}^{(r)} = \min_{|\alpha+\beta|=r} \frac{\int_{K} f(x) x^{\alpha} (1-x)^{\beta} dx}{\int_{K} x^{\alpha} (1-x)^{\beta} dx}$$

For $K = [0, 1]^n$, consider the upper bound:

$$\overline{f}_{1p}^{(r)} = \min \int_{K} f(x)h(x)dx \quad \text{s.t.} \quad h(x) = \sum_{\alpha,\beta \in \mathbb{N}^{n}} \underbrace{\lambda_{\alpha,\beta}}_{\geq 0} x^{\alpha}(1-x)^{\beta}, \int_{K} h(x)dx = 1.$$

Theorem (De Klerk-Lasserre-L-Sun 2015)

▶ $\overline{f}_{lp}^{(r)}$ needs $O(n^r)$ elementary computations:

$$\overline{f}_{\rm lp}^{(r)} = \min_{|\alpha+\beta|=r} \frac{\int_{\mathcal{K}} f(x) x^{\alpha} (1-x)^{\beta} dx}{\int_{\mathcal{K}} x^{\alpha} (1-x)^{\beta} dx}$$

• Convergence rate: For $r \ge r_0$

$$\overline{f}_{\mathrm{lp}}^{(r)} - f_{\min} \leq \frac{C_f}{\sqrt{r}}$$

For $K = [0, 1]^n$, consider the upper bound:

$$\overline{f}_{lp}^{(r)} = \min \int_{K} f(x)h(x)dx \quad \text{s.t.} \quad h(x) = \sum_{\alpha,\beta \in \mathbb{N}^{n}} \underbrace{\lambda_{\alpha,\beta}}_{\geq 0} x^{\alpha}(1-x)^{\beta}, \int_{K} h(x)dx = 1.$$

Theorem (De Klerk-Lasserre-L-Sun 2015)

• $\overline{f}_{lp}^{(r)}$ needs $O(n^r)$ elementary computations:

$$\overline{f}_{\rm lp}^{(r)} = \min_{|\alpha+\beta|=r} \frac{\int_{\mathcal{K}} f(x) x^{\alpha} (1-x)^{\beta} dx}{\int_{\mathcal{K}} x^{\alpha} (1-x)^{\beta} dx}$$

• Convergence rate: For $r \ge r_0$

$$\overline{f}_{lp}^{(r)} - f_{min} \leq \frac{C_f}{\sqrt{r}}, \quad \leq \frac{C'_f}{r} \quad if \ f \ has a rational minimizer$$

 \rightsquigarrow Link to the **beta distribution**

Motzkin polynomial: $f(x, y) = (4x-2)^4(4y-2)^2 + (4x-2)^2(4y-2)^4 - 3(4x-2)^2(4y-2)^2 + 1$ over $K = [0, 1]^2$: Handelman-type densities (deg 24, 50) & SOS (deg 24)

For $K = [-1, 1]^n$ consider the upper bound:

$$\overline{f}_{\text{sosS}}^{(r)} = \min \int_{\mathcal{K}} f(x)h(x)d\mu_n \quad \text{s.t.} \quad h(x) = \sum_{I \subseteq [n]} \underbrace{\sigma_I}_{\text{SoS}} (1-x^2)^I, \quad \int_{\mathcal{K}} h(x)d\mu_n = 1$$

For $K = [-1, 1]^n$ consider the upper bound:

$$\overline{f}_{\text{sosS}}^{(r)} = \min \int_{K} f(x)h(x)d\mu_{n} \text{ s.t. } h(x) = \sum_{I \subseteq [n]} \underbrace{\sigma_{I}}_{\text{SoS}} (1-x^{2})^{I}, \quad \int_{K} h(x)d\mu_{n} = 1$$
where $d\mu_{n} = \left(\prod_{i=1}^{n} \pi \sqrt{1-x_{i}}\right)^{-1} dx.$

For $K = [-1, 1]^n$ consider the upper bound:

$$\overline{f}_{sosS}^{(r)} = \min \int_{K} f(x)h(x)d\mu_{n} \text{ s.t. } h(x) = \sum_{I \subseteq [n]} \underbrace{\sigma_{I}}_{Sos} (1-x^{2})^{I}, \quad \int_{K} h(x)d\mu_{n} = 1$$
where $d\mu_{n} = \left(\prod_{i=1}^{n} \pi \sqrt{1-x_{i}}\right)^{-1} dx.$

Theorem (De Klerk-Hess-L 2016)

▶ $\overline{f}_{sosS}^{(r)}$ can be computed as generalized eigenvalue problem:

$$\overline{f}_{sosS}^{(r)} = \min_{I \subseteq [n]} \left\{ \max_{\lambda} \lambda \quad s.t. \ A^{(I)} - \lambda B^{(I)} \succeq 0 \right\}.$$

For $K = [-1, 1]^n$ consider the upper bound:

$$\overline{f}_{\text{sosS}}^{(r)} = \min \int_{K} f(x)h(x)d\mu_{n} \text{ s.t. } h(x) = \sum_{I \subseteq [n]} \underbrace{\sigma_{I}}_{\text{SoS}} (1-x^{2})^{I}, \quad \int_{K} h(x)d\mu_{n} = 1$$
where $d\mu_{n} = \left(\prod_{i=1}^{n} \pi \sqrt{1-x_{i}}\right)^{-1} dx.$

Theorem (De Klerk-Hess-L 2016)

▶ $\overline{f}_{sosS}^{(r)}$ can be computed as generalized eigenvalue problem:

$$\overline{f}_{sosS}^{(r)} = \min_{I \subseteq [n]} \left\{ \max_{\lambda} \lambda \quad s.t. \ A^{(I)} - \lambda B^{(I)} \succeq 0 \right\}.$$

• Convergence rate: For $r \ge r_0$

$$\overline{f}_{sosS}^{(r)} - f_{\min} \le \frac{C_f}{r^2}$$

Motzkin polynomial: $f(x,y) = 64(x^4y^2 + x^2y^4) - 48x^2y^2 + 1$ over $K = [-1,1]^2$

Optimal Schmüdgen type densities of degree 12, 16:

$$\delta_{\mathbf{a}}^{(r)}(x) = 1 + 2 \sum_{k=1}^{r} g_{k}^{(r)} T_{k}(\mathbf{a}) T_{k}(x)$$

Following [Weisse-Alvermann-Fehske 2006] use **approximations** of the delta function at **a** by taking its convolution with the **Jackson kernel**:

$$\delta_{\mathbf{a}}^{(r)}(x) = 1 + 2 \sum_{k=1}^{r} g_{k}^{(r)} T_{k}(\mathbf{a}) T_{k}(x)$$

• $T_k(x) = \cos(k \arccos x)$: Tchebyshev polynomials

Following [Weisse-Alvermann-Fehske 2006] use **approximations** of the delta function at **a** by taking its convolution with the **Jackson kernel**:

$$\delta_{\mathbf{a}}^{(r)}(x) = 1 + 2 \sum_{k=1}^{r} g_{k}^{(r)} T_{k}(\mathbf{a}) T_{k}(x)$$

T_k(x) = cos(k arccos x): Tchebyshev polynomials → orthogonal basis of ℝ[x] for inner product: ⟨f, g⟩ = ∫¹₋₁ f(x)g(x)dµ₁.

Following [Weisse-Alvermann-Fehske 2006] use **approximations** of the delta function at **a** by taking its convolution with the **Jackson kernel**:

$$\delta_{\mathbf{a}}^{(r)}(x) = 1 + 2 \sum_{k=1}^{r} g_{k}^{(r)} T_{k}(\mathbf{a}) T_{k}(x)$$

► $T_k(x) = \cos(k \arccos x)$: Tchebyshev polynomials \rightsquigarrow orthogonal basis of $\mathbb{R}[x]$ for inner product: $\langle f, g \rangle = \int_{-1}^1 f(x)g(x)d\mu_1$.

$$\bullet \ \vartheta_r = \frac{\pi}{r+2}, \ g_k^{(r)} = \frac{1}{r+2}((r+2-k)\cos(k\vartheta_r) + \frac{\sin(k\vartheta_r)}{\sin\vartheta_r}\cos\vartheta_r),$$

$$\delta_{\mathbf{a}}^{(r)}(x) = 1 + 2 \sum_{k=1}^{r} g_{k}^{(r)} T_{k}(\mathbf{a}) T_{k}(x)$$

- ► $T_k(x) = \cos(k \arccos x)$: Tchebyshev polynomials \rightsquigarrow orthogonal basis of $\mathbb{R}[x]$ for inner product: $\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)d\mu_1$.
- ► $\vartheta_r = \frac{\pi}{r+2}$, $g_k^{(r)} = \frac{1}{r+2}((r+2-k)\cos(k\vartheta_r) + \frac{\sin(k\vartheta_r)}{\sin\vartheta_r}\cos\vartheta_r)$, so that:
- ► $\delta_{a}^{(r)}(x)$ is a polynomial (of degree r) density for μ_1 on [-1, 1].

$$\delta_{\mathbf{a}}^{(r)}(x) = 1 + 2 \sum_{k=1}^{r} g_{k}^{(r)} T_{k}(\mathbf{a}) T_{k}(x)$$

- ► $T_k(x) = \cos(k \arccos x)$: Tchebyshev polynomials \rightsquigarrow orthogonal basis of $\mathbb{R}[x]$ for inner product: $\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)d\mu_1$.
- ► $\vartheta_r = \frac{\pi}{r+2}$, $g_k^{(r)} = \frac{1}{r+2}((r+2-k)\cos(k\vartheta_r) + \frac{\sin(k\vartheta_r)}{\sin\vartheta_r}\cos\vartheta_r)$, so that:
- ► $\delta_{a}^{(r)}(x)$ is a polynomial (of degree r) density for μ_1 on [-1, 1]. Hence: $\delta_{a}^{(r)}(x) = \sigma_0 + \sigma_1(1 - x^2)$, with σ_0, σ_1 SoS of degree $\leq r$.

$$\delta_{\mathbf{a}}^{(r)}(x) = 1 + 2 \sum_{k=1}^{r} g_{k}^{(r)} T_{k}(\mathbf{a}) T_{k}(x)$$

- ► $T_k(x) = \cos(k \arccos x)$: Tchebyshev polynomials \rightsquigarrow orthogonal basis of $\mathbb{R}[x]$ for inner product: $\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)d\mu_1$.
- ► $\vartheta_r = \frac{\pi}{r+2}$, $g_k^{(r)} = \frac{1}{r+2}((r+2-k)\cos(k\vartheta_r) + \frac{\sin(k\vartheta_r)}{\sin\vartheta_r}\cos\vartheta_r)$, so that:
- ► $\delta_{a}^{(r)}(x)$ is a polynomial (of degree r) density for μ_1 on [-1, 1]. Hence: $\delta_{a}^{(r)}(x) = \sigma_0 + \sigma_1(1 - x^2)$, with σ_0, σ_1 SoS of degree $\leq r$.
- For k = 1 $|g_1^{(r)} 1| = O(1/r^2)$.

Following [Weisse-Alvermann-Fehske 2006] use **approximations** of the delta function at **a** by taking its convolution with the **Jackson kernel**:

$$\delta_{\mathbf{a}}^{(r)}(x) = 1 + 2 \sum_{k=1}^{r} g_{k}^{(r)} T_{k}(\mathbf{a}) T_{k}(x)$$

- ► $T_k(x) = \cos(k \arccos x)$: Tchebyshev polynomials \rightsquigarrow orthogonal basis of $\mathbb{R}[x]$ for inner product: $\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)d\mu_1$.
- ► $\vartheta_r = \frac{\pi}{r+2}$, $g_k^{(r)} = \frac{1}{r+2}((r+2-k)\cos(k\vartheta_r) + \frac{\sin(k\vartheta_r)}{\sin\vartheta_r}\cos\vartheta_r)$, so that:
- ► $\delta_{a}^{(r)}(x)$ is a polynomial (of degree r) density for μ_1 on [-1, 1]. Hence: $\delta_{a}^{(r)}(x) = \sigma_0 + \sigma_1(1 - x^2)$, with σ_0, σ_1 SoS of degree $\leq r$.
- For k = 1 $|g_1^{(r)} 1| = O(1/r^2)$.

 \rightsquigarrow rate of convergence in $1/r^2$ for $\overline{f}_{soss}^{(r)}$.

Kernel approximations $\delta_0^{(r)}(x)$ of the Dirac at degree r = 8, 16, 32, 64:

Discrepancy between theory and practice for the upper bounds:

Discrepancy between theory and practice for the upper bounds:

r	Matyas		Three-Hump	Camel	Motzkin	
	Value	Time (sec.)	Value	Time (sec.)	Value	Time (sec.)
2	8.26667	0.000739	265.774	0.000742	4.2	0.000719
6	4.28172	0.000072	29.0005	0.000066	1.06147	0.000080
12	2.99563	0.000263	4.43983	0.000263	0.801069	0.000208
18	1.83356	0.000655	2.55032	0.000586	0.565553	0.000766
24	1.11785	0.001753	1.2775	0.001693	0.406076	0.001712
30	0.8524	0.002270	1.0185	0.002936	0.3004	0.002351
36	0.5760	0.005510	0.7113	0.004882	0.2300	0.006060
40	0.4815	0.006975	0.6064	0.007031	0.1817	0.007686

Matyas: $f = (x_1 + 2x_2 - 7)^2 + (2x_1 + x_2 - 5)^2$, $K = [-10, 10]^2$. Three-Hump Camel: $f = 2x_1^2 - 1.05x_1^4 + \frac{1}{6}x_1^6 + x_1x_2 + x_2^2$, $K = [-5, 5]^2$. Motzkin: $f = x_1^4x_2^2 + x_1^2x_2^4 - 3x_1^2x_2^2 + 1$, $K = [-2, 2]^2$. $f_{\min} = 0$, bounds $\overline{f}_{sos}^{(r)}$ with SoS density.

Discrepancy between theory and practice for the upper bounds, and also for the lower vs. upper bounds:

Better theoretical convergence results for the upper bounds, but slower in practice...

Discrepancy between theory and practice for the upper bounds, and also for the lower vs. upper bounds:

Better theoretical convergence results for the upper bounds, but slower in practice...

Problem: Show better convergence rates for the lower bounds.

New techniques needed ...

 One can use the upper bounds to generate good feasible solutions using sampling.

r	$\overline{f}_{sos}^{(r)}$	Mean	Variance	Minimum	Sample Size
2	265 774	216.773	177142.0	0.106854	20
2	205.114	261.23	193466.0	0.11705	1000
4	20,0005	28.0344	2964.85	1.1718	20
	29.0005	27.712	6712.8	0.014255	1000
14	1 13083	3.96711	20.3193	0.260331	20
	4.45905	3.7911	57.847	0.0076111	1000
22	1 71275	1.30757	1.90985	0.0320489	20
	1.71275	1.6379	7.2518	0.0021144	1000
24	1 27740	0.841194	0.914514	0.0369565	20
	1.27749	1.2105	2.3	0.0005154	1000
Uniform Sample		304.032	163021.0	1.65885	20
		243.216	183724.0	0.00975034	1000

SoS upper bounds for the Three-Hamp Camel function: $f = 2x_1^2 - 1.05x_1^4 + \frac{1}{6}x_1^6 + x_1x_2 + x_2^2 \text{ over } \mathcal{K} = [-5, 5]^2.$

THANK YOU

Based on the papers

- Improved convergence rates for Lasserre-type hierarchies of upper bounds for box-constrained polynomial optimization. With E. de Klerk, R. Hess, arXiv:1603.03329.
- Bound-constrained polynomial optimization using only elementary calculations. With E. de Klerk, J. Lasserre and Z. Sun, arXiv:1507.04404.
- Convergence analysis for Lasserre's measure-based hierarchy of upper bounds for polynomial optimization. With E. de Klerk and Z. Sun, arXiv:1411.6867
- On the convergence rate of grid search for polynomial optimization over the simplex. With E. de Klerk, Z. Sun, J. Vera, Opt. Letters, 2016.
- ► An alternative proof of a PTAS for fixed-degree polynomial optimization over the simplex. With E. de Klerk and Z. Sun. Math.Prog. 2014.
- ► A PTAS for the minimization of polynomials of fixed degree over the simplex. With E. De Klerk and P. Parrilo. TCS, 2006.

Optimization over the unit sphere

SOS lower bounds:

$$\underline{f}_{sosS}^{(r)} = \sup \lambda \text{ s.t. } f(x) - \lambda = \underbrace{\sigma_0}_{\text{SOS of degree } 2r} + u(1 - \sum_{i=1}^n x_i^2).$$

Theorem

Let f be a homogeneous polynomial of even degree.

- [Faybusovich 2003] $f_{\min} \frac{f_{coss}^{(r)}}{f_{min}} = O(\frac{1}{r})$ for r = O(n).
- In addition, Doherty-Wehner (2013) construct measure-based upper bounds with the same performance guarantee.
- Parrilo-Wehner announced convergence in O(¹/_{r²}) for both upper and lower bounds.