Probabilistic Approach to One Class SVM

V. Leclère (ENPC), L. El Ghaoui, E. Graves

MODE 2016 March 25, 2016

Presentation Outline

1 A probabilistic approach to binary classification

- Problem formulation
- Toward the SVM formulation
- 2 Other elements to take into account
 - Some other ingredients
 - Large scale problem
 - Kernelization
- 3 Numerica results and comparisons
 - Some recalls
 - Small experiment : protein classification
 - Large experiment : text classification

Other elements to take into account Numerica results and comparisons Conclusion Problem formulation Toward the SVM formulation

Contents

A probabilistic approach to binary classification

Problem formulation

• Toward the SVM formulation

2 Other elements to take into account

- Some other ingredients
- Large scale problem
- Kernelization

3 Numerica results and comparisons

- Some recalls
- Small experiment : protein classification
- Large experiment : text classification

Numerica results and comparisons

Problem formulation Toward the SVM formulation

Binary classification

- Consider that you have a set of training data points {x_i}_{i∈1}.
- Each data is either labeled as a positive or negative point, through y_i ∈ {−1, +1}.
- We are looking for a linear classifier (w, b) such that

•
$$w^T x_i - b \ge 0$$
, if $y_i = 1$
• $w^T x_i - b \le 0$, if $y_i = -1$

• We are intereseted in imbalanced classification where there are a lot more negative points than positive points.

Problem formulation Toward the SVM formulation

Probabilistic formulation

- We represent the negative points as a random variable **x**.
- We want a classifier that truly classify each positive point, and minimize the probability of a false negative, i.e.

$$\begin{split} \max_{\substack{\mathbf{w},b}\\ s.t. & \mathbf{w}^\top \mathbf{x}_i - b \geq 0, \end{split} \qquad \forall i \in I^+. \end{split}$$

 However, as we do not know the probability distribution of the negative points, we consider a robust approach where only the mean x̄ and covariance Σ are known.

$$egin{array}{lll} \max & \inf & \mathbb{P}(\mathbf{w}^{ op}\mathbf{x}-b\leq 0), \ \mathbf{w}, b & \mathbf{x}\sim(ar{\mathbf{x}}, oldsymbol{\Sigma}) & \end{array}$$

Problem formulation Toward the SVM formulation

Probabilistic formulation

- We represent the negative points as a random variable **x**.
- We want a classifier that truly classify each positive point, and minimize the probability of a false negative, i.e.

$$\begin{split} \max_{\substack{\mathbf{w},b}\\ s.t. & \mathbf{w}^\top \mathbf{x}_i - b \geq 0, \end{split} \qquad \forall i \in I^+. \end{split}$$

• However, as we do not know the probability distribution of the negative points, we consider a robust approach where only the mean $\bar{\mathbf{x}}$ and covariance Σ are known.

$$\begin{array}{ll} \max_{\mathbf{w},b} & \inf_{\mathbf{x}\sim(\bar{\mathbf{x}},\boldsymbol{\Sigma})} \mathbb{P}(\mathbf{w}^{\top}\mathbf{x}-b\leq 0), \\ s.t. & \mathbf{w}^{\top}\mathbf{x}_{i}-b\geq 0, \qquad \forall i\in I^{+}. \end{array}$$

Other elements to take into account Numerica results and comparisons Conclusion Problem formulation Toward the SVM formulation

Contents

- A probabilistic approach to binary classification
 Problem formulation
 - Toward the SVM formulation
- 2 Other elements to take into account
 - Some other ingredients
 - Large scale problem
 - Kernelization
- 3 Numerica results and comparisons
 - Some recalls
 - Small experiment : protein classification
 - Large experiment : text classification

Other elements to take into account Numerica results and comparisons Conclusion Problem formulation Toward the SVM formulation

Toward an SVM-like representation 1/3

• The condition

$$\inf_{\mathbf{x}\sim(\bar{\mathbf{x}},\boldsymbol{\Sigma})} \mathbb{P}\left(\mathbf{x}^{\top}\mathbf{w} - b \leq \mathbf{0}\right) \geq \alpha,$$

holds if and only if

$$b - \overline{\mathbf{x}}^{\top} \mathbf{w} \ge \kappa(\alpha) \sqrt{\mathbf{w}^{\top} \Sigma \mathbf{w}},$$

where
$$\kappa(\alpha) = \sqrt{\frac{\alpha}{1-\alpha}}$$
.

• Hence, our problem reads

$$\begin{array}{l} \max_{\alpha, \mathbf{w}, b} \quad \alpha \\ \text{s.t.} \quad b - \overline{\mathbf{x}}^\top \mathbf{w} \ge \kappa(\alpha) \sqrt{\mathbf{w}^\top \Sigma \mathbf{w}}, \\ \mathbf{x}_i^\top \mathbf{w} - b \ge 0, \end{array}$$

Other elements to take into account Numerica results and comparisons Conclusion Problem formulation Toward the SVM formulation

Toward an SVM-like representation 1/3

• The condition

$$\inf_{\mathbf{x}\sim(\bar{\mathbf{x}},\boldsymbol{\Sigma})} \mathbb{P}\left(\mathbf{x}^{\top}\mathbf{w} - b \leq \mathbf{0}\right) \geq \alpha,$$

holds if and only if

$$b - \overline{\mathbf{x}}^{\top} \mathbf{w} \ge \kappa(\alpha) \sqrt{\mathbf{w}^{\top} \mathbf{\Sigma} \mathbf{w}},$$

where
$$\kappa(\alpha) = \sqrt{\frac{\alpha}{1-\alpha}}$$
.

• Hence, our problem reads

$$\begin{array}{ll} \max_{\alpha, \mathbf{w}, b} & \alpha \\ \text{s.t.} & b - \overline{\mathbf{x}}^\top \mathbf{w} \geq \kappa(\alpha) \sqrt{\mathbf{w}^\top \Sigma \mathbf{w}}, \\ & \mathbf{x}_i^\top \mathbf{w} - b \geq 0, \end{array} \qquad \forall i \end{array}$$

 $\in I^+$.

Problem formulation Toward the SVM formulation

Toward an SVM-like representation 2/3

Numerica results and comparisons

• $\kappa : \alpha \mapsto \sqrt{\frac{\alpha}{1-\alpha}}$ is increasing on [0, 1[, this problem is equivalent to the program:

$$\begin{array}{ll} \max_{\kappa, \mathbf{w}, b} & \kappa \\ \text{s.t.} & b - \overline{\mathbf{x}}^\top \mathbf{w} \geq \kappa \sqrt{\mathbf{w}^\top \Sigma \mathbf{w}}, \\ & \mathbf{x}_i^\top \mathbf{w} - b \geq 0, \end{array} \quad \forall i \in I^+. \end{array}$$

Note that w ≠ 0, hence we can impose κ√w[⊤]Σw = 1
 Leading to

$$\begin{array}{ll} \max\limits_{\mathbf{w},b} & \frac{1}{\sqrt{\mathbf{w}^{\top}\Sigma\mathbf{w}}}\\ \text{s.t.} & b-\overline{\mathbf{x}}^{\top}\mathbf{w} \geq 1 \end{array}$$

Problem formulation Toward the SVM formulation

Toward an SVM-like representation 2/3

Numerica results and comparisons

• $\kappa : \alpha \mapsto \sqrt{\frac{\alpha}{1-\alpha}}$ is increasing on [0, 1[, this problem is equivalent to the program:

$$\begin{split} \max_{\substack{\kappa, \mathbf{w}, b}} & \kappa \\ \text{s.t.} & b - \overline{\mathbf{x}}^\top \mathbf{w} \geq \kappa \sqrt{\mathbf{w}^\top \Sigma \mathbf{w}}, \\ & \mathbf{x}_i^\top \mathbf{w} - b \geq 0, \end{split} \qquad \forall i \in I^+. \end{split}$$

• Note that $w \neq 0$, hence we can impose $\kappa \sqrt{\mathbf{w}^{\top} \Sigma \mathbf{w}} = 1$.

$$egin{array}{c} \max & rac{1}{\sqrt{\mathbf{w}^{ op}}\mathbf{\Sigma}\mathbf{w}} \ & ext{s.t.} & b - \mathbf{ar{x}}^{ op}\mathbf{w} \geq 1 \end{array}$$

Problem formulation Toward the SVM formulation

Toward an SVM-like representation 2/3

Numerica results and comparisons

• $\kappa : \alpha \mapsto \sqrt{\frac{\alpha}{1-\alpha}}$ is increasing on [0, 1[, this problem is equivalent to the program:

Conclusion

$$\begin{split} \max_{\substack{\kappa, \mathbf{w}, b}} & \kappa \\ \text{s.t.} & b - \overline{\mathbf{x}}^\top \mathbf{w} \geq \kappa \sqrt{\mathbf{w}^\top \Sigma \mathbf{w}}, \\ & \mathbf{x}_i^\top \mathbf{w} - b \geq 0, \end{split} \qquad \forall i \in I^+. \end{split}$$

Note that w ≠ 0, hence we can impose κ√w^TΣw = 1.
Leading to

$$\begin{array}{ll} \max_{\mathbf{w},b} & \frac{1}{\sqrt{\mathbf{w}^{\top}\boldsymbol{\Sigma}\mathbf{w}}}\\ \text{s.t.} & b - \bar{\mathbf{x}}^{\top}\mathbf{w} \geq 1,\\ & \mathbf{x}_{i}^{\top}\mathbf{w} - b \geq 0, \qquad \forall i \in I^{+}. \end{array}$$

Problem formulation Toward the SVM formulation

Toward an SVM-like representation 3/3

• Finally, since the function $x \mapsto 1/\sqrt{x}$ is decreasing on \mathbb{R}^*_+ , we obtain the equivalent program:

$$\begin{split} \min_{\mathbf{w}} & \mathbf{w}^\top \mathbf{\Sigma} \mathbf{w} \\ \text{s.t.} & b - \mathbf{\bar{x}}^\top \mathbf{w} \ge 1, \\ & \mathbf{x}_i^\top \mathbf{w} - b \ge 0, \end{split} \qquad \forall i \in I^+. \end{split}$$

- Which is a Support Vector Machine formulation with two differences :
 - instead of minimizing the ℓ_2 -norm of **w**, we minimize the Mahalanobis norm corresponding to the covariance matrix of the negative class distribution,
 - the negative class contains only $\boldsymbol{\bar{x}}.$

Problem formulation Toward the SVM formulation

Link to the One-Class SVM

 In the previous formulation we see that the optimal b can be derived as

$$b^{\sharp} = \min_{i \in I^+} x_i^T w^{\sharp} = 1 + \bar{\mathbf{x}}^\top \mathbf{w}^{\sharp}$$

• Hence, we have the formulation

$$\begin{split} \min_{\mathbf{w}} \quad \mathbf{w}^\top \mathbf{\Sigma} \mathbf{w} \\ \text{s.t.} \quad \left(\mathbf{x}_i - \mathbf{\bar{x}} \right)^\top \mathbf{w} \geq 1, \qquad \quad \forall i \in I^+. \end{split}$$

• This is almost a one-class SVM :

- we separate in the Mahalanobis norm,
- we separate from the mean of the negative class instead of the origin.
- It is equivalent to apply classical one class SVM to preprocessed positive datapoints:

$$\tilde{x}_i = \Sigma^{-1/2} (x_i - \bar{x}).$$

Leclère, El Ghaoui, Graves

Prob. One Class SVM

Some other ingredients Large scale problem Kernelization

Contents

- A probabilistic approach to binary classification
 - Problem formulation
 - Toward the SVM formulation
- 2 Other elements to take into account
 - Some other ingredients
 - Large scale problem
 - Kernelization
- 3 Numerica results and comparisons
 - Some recalls
 - Small experiment : protein classification
 - Large experiment : text classification

Some other ingredients Large scale problem Kernelization

Non-separability

- Our formulation require that the mean of the negative class is not in the convex hull of the positive points.
- To relax this strong assumption we add slack variable ξ_i, which are penalized.
- The formulation reads

۱

$$\min_{\mathbf{w},b,\xi \ge 0} \quad \mathbf{w}^{\top} \mathbf{\Sigma} \mathbf{w} + \frac{1}{\nu |I^+|} \sum_{i \in I^+} \xi_i$$
s.t. $b - \mathbf{\bar{x}}^{\top} \mathbf{w} \ge 1,$
 $\mathbf{x}_i^{\top} \mathbf{w} - b + \xi_i \ge 0, \quad \forall i \in I^+.$

Some other ingredients Large scale problem Kernelization

Sparsity

- We might want the optimal classifier *w* to be sparse to be able to interpret it, and to regularize the solution.
- A classical way of asking for Sparsity consists in adding a penalization of the L₁ norm of the solution w.
- Leading to

$$\begin{split} \min_{\boldsymbol{w}, b, \xi \geq 0} \quad \boldsymbol{w}^{\top} \boldsymbol{\Sigma} \boldsymbol{w} &+ \frac{1}{\nu |I^+|} \sum_{i \in I^+} \xi_i + \eta \|\boldsymbol{w}\|_1 \\ \text{s.t.} \quad b - \bar{\boldsymbol{x}}^{\top} \boldsymbol{w} \geq 1, \\ \boldsymbol{x}_i^{\top} \boldsymbol{w} - b + \xi_i \geq 0, \qquad \forall i \in I^+. \end{split}$$

Some other ingredients Large scale problem Kernelization

Contents

- A probabilistic approach to binary classification
 - Problem formulation
 - Toward the SVM formulation
- 2 Other elements to take into account
 - Some other ingredients
 - Large scale problem
 - Kernelization
- 3 Numerica results and comparisons
 - Some recalls
 - Small experiment : protein classification
 - Large experiment : text classification

Some other ingredients Large scale problem Kernelization

Factor model of covariance matrix

- To reduce the computation cost and to reduce the effect of noise in the data we look to a factor model of the covariance matrix.
- More precisely we look for matrices D and F such that

$$\Sigma \approx D + FF^T$$
,

where D is diagonal and F is $n \times k$ with $k \ll n$.

- This approximation can be obtained by use of svd decomposition of the centered dataset.
- Note that if the data is sparse the svd decomposition of the centered data can be done efficiently.

Some other ingredients Large scale problem Kernelization

Contents

- A probabilistic approach to binary classification
 - Problem formulation
 - Toward the SVM formulation

2 Other elements to take into account

- Some other ingredients
- Large scale problem
- Kernelization

3 Numerica results and comparisons

- Some recalls
- Small experiment : protein classification
- Large experiment : text classification

Some other ingredients Large scale problem Kernelization

Kernelization

- It is classical for different application to train svm with kernel.
- Basically a kernel approach consists in looking for non linear separation of the datapoints by considering a linear separation in a bigger space:
 - consider a feature function φ such that for any (x, y) we have φ(x)^Tφ(y) = K(x, y);
 - apply linear SVM to the points φ(x_i).

 Practically it only requires to replace the scalar product x_i^T x_j by another symmetric function K(x_i, x_j) satisfying some properties.

Some other ingredients Large scale problem Kernelization

Kernelization

- We have seen that our approach is equivalent to applying one-class SVM to some preprocessed data. So why not applying kernel to this preprocessed data ?
- We don't want to preprocess the datapoints (consume time and lose sparsity).
- However applying classical kernels (polynomial, RBF and sigmoidal) applied to the preprocessed data are equivalent to customized kernels applied to the original positive data.

Some recalls

Small experiment : protein classificatior Large experiment : text classification

Contents

- A probabilistic approach to binary classification
 - Problem formulation
 - Toward the SVM formulation
- 2 Other elements to take into account
 - Some other ingredients
 - Large scale problem
 - Kernelization
- 3 Numerica results and comparisons

Some recalls

- Small experiment : protein classification
- Large experiment : text classification

Some recalls Small experiment : protein classification Large experiment : text classification

Other method available

Standard binary classification on an imbalanced subset gives poor results for the small class. In particular most classifier have a tendency to always classify points as element of the big class.

Here are two classical ways of dealing with this problem

- Subsampling: randomly selectionning a subsample of the negative class and consider it as the whole negative class.
- Differential costs: assign different penality *C* to each class, penalizing more any misclassification of the small class.

Some recalls

Small experiment : protein classification Large experiment : text classification

Area Under the Curve Metric

- linear classifier: $w^T x_i + b$.
- Parameter b depend on your willingness to have false positive or false negative.
- The ROC curve is a curve in the true positive / false positive plane.
- Interpretation : take randomly a positive and a negative point. AUC is the probability of finding the positive with classifier w.

Some recalls Small experiment : protein classification Large experiment : text classification

Contents

- A probabilistic approach to binary classification
 - Problem formulation
 - Toward the SVM formulation
- 2 Other elements to take into account
 - Some other ingredients
 - Large scale problem
 - Kernelization
- On the second second
 - Some recalls
 - Small experiment : protein classification
 - Large experiment : text classification

Some recalls Small experiment : protein classification Large experiment : text classification

Dataset presentation

Dataset	# positive	# negative	ratio
PhosS	613	10,798	17
РнояТ	140	9,051	64
PhosY	136	5,103	37
CAM	942	17,974	19

Table : Basic statistics about the different datasets.

Available here : www.informatics.indiana.edu/predrag/publications.htm

Some recalls Small experiment : protein classification Large experiment : text classification

Results comparison

	This work	Cost-sensitive	Sampling
PhosS	$77.2^\dagger\pm0.7$	76.8 ± 0.8	74.3 ± 1.1
РноѕТ	$77.4^\dagger \pm 1.7$	73.0 ± 2.0	$\textbf{72.0} \pm \textbf{1.5}$
PhosY	$76.2^\dagger \pm 1.5$	72.8 ± 1.7	70.1 ± 2.1
CAM	78.2 ± 0.5	78.1 ± 0.5	75.3 ± 0.4

Table : Areas under the ROC curve (with confidence intervals), averaged over twenty experiments. [†] indicates that our method is significantly better than the two others, (with *p*-value p < 0.01).

Some recalls Small experiment : protein classification Large experiment : text classification

Figure : ROC curves, averaged over twenty experiments, on the $\rm PHOsT$ and $\rm PHOsY$ datasets.

Some recalls Small experiment : protein classification Large experiment : text classification

Contents

- A probabilistic approach to binary classification
 - Problem formulation
 - Toward the SVM formulation
- 2 Other elements to take into account
 - Some other ingredients
 - Large scale problem
 - Kernelization
- Output State St
 - Some recalls
 - Small experiment : protein classification
 - Large experiment : text classification

Some recalls Small experiment : protein classification Large experiment : text classification

The reuter dataset

- About 200'000 documents, with 50'000 features, classified in 40 classes.
- Available on Liblinear website.
- We select one-class to be positive all the other are negative.

Some recalls Small experiment : protein classification Large experiment : text classification

Reuters results

Topic	This work	Cost-sensitive	Sampling
2	89.7 ± 1.0	89.9 ± 1.4	87.7 ± 1.2
9	96.1 ± 0.7	96.3 ± 0.8	94.1 ± 1.3
25	95.1 ± 0.8	94.3 ± 1.6	93.7 ± 1.2
33	96.0 ± 0.4	95.7 ± 0.6	93.9 ± 0.7
59	96.1 ± 0.4	95.9 ± 1.4	95.0 ± 0.6
84	96.9 ± 0.8	96.4 ± 1.5	96.3 ± 0.9

Table : Areas under the ROC curve (with confidence intervals), averaged over ten experiments. Differences between our moment-based imbalanced binary classifier and subsampling results are statistically significant (with p-value p < 0.01).

Some recalls Small experiment : protein classification Large experiment : text classification

Reuters results

Topic	This work	Cost-sensitive	Speed-up
2	33	1088	33×
9	49	1451	29 imes
25	56	1211	21 imes
33	74	1788	$24 \times$
59	62	1299	21 imes
84	56	2056	$36 \times$

Table : Computational times, in milliseconds, required to solve one problem, averaged over ten experiments.

Some recalls Small experiment : protein classification Large experiment : text classification

Figure : ROC curves, averaged over ten experiments, on the $\rm REUTERS$ $\rm _{RCV1}$ dataset.

- We give a theoretical interpretation for the one-class SVM method.
- We show how to adapt the one-class SVM in the case where we have first and second order information over the negative class.
- We apply this approach to imbalanced classification with good results both in precision and in computational speed.
- We apply this approach to large-scale imbalanced classification with significative speed improvement.

The end

Thank you for your attention !