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The Problem

m Semialgebraic initial conditions
Xp:={xeR":g)(x) >0,...,8, (x) >0}

m Polynomial map f : R" — R”,
x = f(x) = (fi(x), o fu(%))

m deg f =d := max{deg fi,...,deg f»}

m Set of admissible trajectories
X* = {(Xt)telN DXt :f(Xt) ,Vt S N,Xo e Xo}

B X' = Uienf"(Xo) € X, with X C R" aboxora
ball

m Tractable approximations of X* ?
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The Problem

m Occurs in several contexts :
program analysis: fixpoint computation
toyprogram (xq,Xx3)
requires (025<x1 0.75 && 0.25 < xp <0.75) ;
while (JC1 + x2 DA
X1 = X1+ 2x1X7;
xp =05(x, —2x3);

hybrid systems, biology: Neuron Model, Growth Model

control: integrator, Hénon map

Victor Magron SDP Approximations of Reachable Sets 2/23



Related work: LP relaxations

Contractive methods based on LP relaxations and
polyhedra projection [Bertsekas 72]

Extension to nonlinear systems [Harwood et al. 16]

Bernstein /Krivine-Handelman representations [Ben Sassi-
et al. 15, Ben Sassi et al. 12]

@® LP relaxations = scalability
© Convex approximations of nonconvex sets = coarse

© No convergence guarantees (very often)
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Related work: SDP relaxations

Upper bounds of the volume of a semialgebraic set
[Henrion et al. 09]

Tractable approximations of sets defined with quantifiers
4, V [Lasserre 15]

Semidefinite characterization of region of attraction
[Henrion-Korda 14]

Convex computation of maximum controlled invariant
[Korda-Henrion-Jones 13]
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Related work: SDP relaxations

SDP approximation of polynomial images of semialgebraic
sets [Magron-Henrion-Lasserre 15]

m X; :=f(Xp) € X, with X C R" a box or a ball
= Discrete-time system with a single iteration

m V" Approximation of image measure supports
—> certified SDP over approximations of X;

m X; = f(Xo)
O degf' =d xt = very expensive computation

© Would only approximate X; and not X*
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Contribution

m General framework to approximate X*
@ No discretization is required
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Contribution

m General framework to approximate X*
@ No discretization is required

m Infinite-dimensional LP formulation
V'support of measures solving Liouville’s Equation

m Finite-dimensional SDP relaxations
B X CX i={xeX:w(x)>1}

@® Strong convergence guarantees lim,_,o vol(X"\X*) = 0
@ Compute w, by solving one semidefinite program
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Contribution

m General framework to approximate X*
@ No discretization is required

m Infinite-dimensional LP formulation
V'support of measures solving Liouville’s Equation

m Finite-dimensional SDP relaxations

B X CX i={xeX:w(x)>1}
@® Strong convergence guarantees lim,_,o vol(X"\X*) = 0
@ Compute w, by solving one semidefinite program

m Work in progress with technical issues
© Requires strong assumption on attractors of f on X\ X*
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Infinite LP Formulation for Polynomial Optimization



What is Semidefinite Programming?

m Linear Programming (LP):

. T
mm ¢ zZ
z

st. Az>d .

m Linear cost ¢

Polyhedron

m Linear inequalities “}; A z; > d;”
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What is Semidefinite Programming?

m Semidefinite Programming (SDP):

. T
mm ¢ Z
z

s.t. ZFZ' zi =Fg .
i

m Linear cost ¢

m Symmetric matrices Fy, F;

Spectrahedron

m Linear matrix inequalities “F = 0”
(F has nonnegative eigenvalues)
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What is Semidefinite Programming?

m Semidefinite Programming (SDP):

. T
mm ¢ Z
z

st. Y Fzi=F, Az=d.
i

m Linear cost ¢

m Symmetric matrices Fy, F;

Spectrahedron

m Linear matrix inequalities “F = 0”
(F has nonnegative eigenvalues)

Victor Magron SDP Approximations of Reachable Sets 8/23



Applications of SDP

m Combinatorial optimization

m Control theory

m Matrix completion

m Unique Games Conjecture (Khot '02) :
“A single concrete algorithm provides optimal guarantees
among all efficient algorithms for a large class of
computational problems.”
(Barak and Steurer survey at ICM'14)

m Solving polynomial optimization (Lasserre ‘01)
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Polynomial Optimization

m Semialgebraic set X := {x e R" : g1(x) > 0,...,g/(x) >0}

m p* :=inf f(x): NP hard

xeX

m Sums of squares X[x]

2 2 _ 2
e.g. X7 —2x1Xy + x5 = (X1 — x2)

= Q(X) := { 0(x) + -1 6(x)g;(%), witho; € Z[x] |

m REMEMBER: f € Q(X) = Vx € X,f(x) >0
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Infinite LP Reformulation

m Borel o-algebra B(X) (generated by the open sets of X)

m M (X): set of probability measures supported on X.
If 1 € M, (X) then
1B —10,00), 1 (@) =0
1(U; Bi) = ¥ 11(B;), for any disjoint countable (B;) C B(X)
Lebesgue Volume of B € B(X)
vol B := / Ap, with Ag(dx) := 15(x) dx
X

m supp /i is the smallest set X such that (R"\X) =0
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Infinite LP Reformulation

“—inff(x) = inf / d
P ;gxf(x) ;tejgtl+(X) Xf #
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Primal-dual Moment-SOS [Lasserre 01]

m Let (x*)pene be the monomial basis

Definition

A sequence z has a representing measure on X if there exists a
finite measure i supported on X such that

za:/x"‘y(dx), VaeIN".
X
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Primal-dual Moment-SOS [Lasserre 01]

m M (X): space of probability measures supported on X

m Q(X): quadratic module

Polynomial Optimization Problems (POP)

(Primal) (Dual)
inf d =
in /x fdu sup m
st. e Mi(X) st. meR,
f=me QX
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Primal-dual Moment-SOS [Lasserre 01]

m Finite moment sequences z of measures in M (X)

m Truncated quadratic module Q,(X) := Q(X) N Ry [x]

Polynomial Optimization Problems (POP)

(Moment) (S0S)
inf Z fa Za = sup m
o
st. My (gjz) =0, 0<j<], st. meR,
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Semidefinite Optimization

m [y, F, symmetric real matrices, cost vector c

Primal-dual pair of semidefinite programs:

P: inf, Y, cizy
st. Y, Fuzy—Fo=0
(SDP)
D: supy Trace (FpY)
s.t. Trace (FxY)=cy, Y3»=0.

m Freely available SDP solvers (CSDP, SDPA, SEDUMI)
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Infinite LP Formulation for Reachability



Pushforward and Liouville’s Equation

m Let Ho € M+(X0)

m Pushforward fy : M (Xy) — M4 (X):
fapo(A) == puo({x € Xo:f(x) € A}), VA € B(X)

® f4 o is the image measure of yp under f
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Pushforward and Liouville’s Equation

m Let ;g € M4 (Xp), « > 1 and define
H1 = afa o

Ut = fypq
t—1 =1
pe=Y =Y o fluo
=0 i=0

m The measures ji, 11, jio satisfy Liouville’s Equation:

Pe+p=afup+ po
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Pushforward and Liouville’s Equation

m Let y1; := Ax,: Lebesgue measure restriction on X; = f*(Xg)

m Iy € M4 (Xo) st e = al flug
— Ji; satisfies Liouville’s Equation!
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Pushforward and Liouville’s Equation

m Let y1; := Ax,: Lebesgue measure restriction on X; = f*(Xg)

m Iy € M4 (Xo) st e = al flug
— Ji; satisfies Liouville’s Equation!

Define 1 := Zf;é o' fiy 1o Then, py + 1 = afy p + pio.
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Pushforward and Liouville’s Equation

m Let y1; := Ax,: Lebesgue measure restriction on X; = f*(Xg)

m Iy € M4 (Xo) st e = al flug
— Ji; satisfies Liouville’s Equation!

Define y 1= Y/ al i jio. Then, s + p = afy p + pio.

m Let /\X<T>: Lebesgue measure restriction on UtT:O X;
= Ax(r) satisfies Liouville’s Equation by superposition
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Pushforward and Liouville’s Equation

m Let y1; := Ax,: Lebesgue measure restriction on X; = f*(Xg)

m Iy € M4 (Xo) st e = al flug
— Ji; satisfies Liouville’s Equation!

Define i := Y[~ a fi jto. Then, jii + 1t = afy pt + po.

m Let Ay(7): Lebesgue measure restriction on U X
= Ax(r) satisfies Liouville’s Equation by superposition

x >1 = Ax- satisfies Liouville’s Equation I
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Infinite Primal LP

*

p = sup / Heo
Moot o X

]"[00 < /\X/
Moo, U € M+<X), Ho € M+(X0) .
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Infinite Primal LP

*

p ‘= sup / Hoo
HeosHs o X

st peot+ U =uafsu+ o,
]’lOO </\X/

Moo, U € M+<X) , Mo €< M+(X0) .

® Question: Ax- optimal for this infinite primal LP ?
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Infinite Primal LP

*

p ‘= sup / Hoo
HeosHs o X

st peot+ U =uafsu+ o,
]/lOO </\X/

Moo, U € M+<X) , Mo €< M+(X0) .

® Question: Ax- optimal for this infinite primal LP ?

m Answer (in general): No!
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Infinite Primal LP

*

p = sup /]/loo
Hoofthtto /X

]’[00 < /\X/
Moo, U € M+<X), Ho € M+(X0).
® Question: Ax- optimal for this infinite primal LP ?

m Answer (in general): No!

Proof

Let u be any invariant measure w.r.t. f on X\ X*:
B )= fy]l, hiny *= (@ — 1) p satisfies Liouville’s Equation

® Ax- + Jliny satisfies Liouville’s Equation

vol(supp ) >0 = volX* < [} (Ax: + piny) < volX.
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Infinite Primal LP

p* = sup / Hoo
poofipto /X
]’loo < /\X/
Moo, U € M+(X) ;, Mo € M+(X0) .

Let jtiny be invariant w.r.t. f with maximal support X™.
Then the above LP has optimal solution Ax- + jtiny and
p* = vol(X* U Xn).
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Infinite Primal LP

p’ = sup / Hoo
Hoorfl o X

]’loo g /\X/
Moo, U € M+(X)/ Ho € M+(X0) .

Let jtiny be invariant w.r.t. f with maximal support X™.
Then the above LP has optimal solution Ax- + jtiny and
p* = vol(X* U Xn).

© Assuming that vol X"V = 0 is a strong hypothesis!
f(x) =x,X:=[0,1/2],X = [0,1]
= X*=Xpand p* = volX.
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LP Primal-dual conic formulation

The LP can be cast as follows:
pt=sup (x,c)1
X

st. Ax=0,
x € EF,
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LP Primal-dual conic formulation

The LP can be cast as follows:
p"=sup (x,c)1
X

st. Ax=0b,
x € Ef,

with
m Ep = M(X)? x M(Xg) Fp:=C(X)?xC(Xo)

8 3= (o flo ) €= (L,0,0,0) €F1 b= (0,4%)

m the linear operator A : E; — E; given by

. ot U —afup— o
A(loo/ ooy thy 0) = I/l ~
Hoos ooy Hy P oo + Tloo
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LP Primal-dual conic formulation

Primal LP Dual LP
p* = sup <X, C>1 d* = inf <b,y>2
X Y
st. Ax=1, st. Aly—c €F/.
X e ET .

with
my:= (v,w) € M(X)?
v+ w

v—avof

m A (v,w):= "

—0
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LP Primal-dual conic formulation

Primal LP Dual LP
p’ = sup / poo d* := inf / w(x) Ax (dx)
pootistt /X v
st Mot =afpp+p, St w—v—1€Ci(X),
oo < x, wvof —veCi(X),
Moo, th € M1 (X), w € Cy(X),
1o € M4 (Xo) . v e C1(Xp) .-
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Zero duality gap
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Strong convergence property

Strengthening of the dual LP:
L= %]ndf ) wﬁzi.f
PENS,
st. w—v—1€ Q,(X),
avof—ve Qu(X),
w e 9 (X),
v e Qy(Xop).

d
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Strong convergence property

Theorem
Assume that X* U X™ has nonempty interior and
Q:(Xop) (resp. Q,(X)) is Archimedean.
The sequence (w,) converges to 1y. xinv W.I.t the
Ly (X)-norm:

lim / ’wr - lx*uximr’ = 0 .
X

r—r00
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Strong convergence property

Theorem
Assume that X* U X™ has nonempty interior and
Q:(Xop) (resp. Q,(X)) is Archimedean.
The sequence (w,) converges to 1y. xinv W.I.t the
Ly (X)-norm:

lim / ’wr - lx*uximr’ = 0 .
X

r—r00

Let X" := {x € X: w,(x) > 1}. Then,

lim vol (X" \X* UX"™) =0 .

r—00
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Application examples



Toy Example

1

Trajectories from X := {x € R?: (x; — )*> + (xo —

1
xf' = §(x1 +2x1x2),

1
Xy = E(xz —2x3),

wt f
02 ’
1
~ ofy
ozt \
0.4 \
Ay
a8 \
A
a8 ~

X4
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Toy Example

Trajectories from X := {x € R?: (x; — )%+ (x2 — )?> < 1} under
x;r = =(x1 +201%2),

+ .
Xy =

X6
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Toy Example

Trajectories from X := {x € R?: (x; — )%+ (x2 — )?> < 1} under

x;r = =(x1 +201%2),

xy = (v — 2x3),

X8
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Toy Example

Trajectories from X := {x € R?: (x; — )%+ (x2 — )?> < 1} under

x;r = =(x1 +201%2),

xy = (v — 2x3),
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Toy Example

Trajectories from X := {x € R?: (x; — )*> + (xo —

Victor Magron

1
1
xf' = §(x1 +2x1x2),

1
Xy = E(xz —2x3),
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Toy Example

1

Trajectories from X := {x € R?: (x; — )*> + (xo —

1
xf' = §(x1 +2x1x2),

1
Xy = E(xz —2x3),

X14

Victor Magron SDP Approximations of Reachable Sets

1?2 < 1} under

21/23



FitzHugh-Nagumo Neuron Model

Trajectories from X := [1,1.25] x [2.25,2.5] under

x| ==x1+02(x; —x7/3 —x, +0.875),
x2+ = xp +0.2(0.08(x1 + 0.7 — 0.8x2)) ,
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FitzHugh-Nagumo Neuron Model

Trajectories from X := [1,1.25] x [2.25,2.5] under

x| ==x1+02(x; —x7/3 —x, +0.875),
.‘)CZ+ = xp +0.2(0.08(x1 + 0.7 — 0.8x2)) ,

l--g— ™
‘-"

B
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oy

IR %J}xvﬁﬁiﬁ i i

Victor Magron SDP Approximations of Reachable Sets 22/23



FitzHugh-Nagumo Neuron Model

Trajectories from X := [1,1.25] x [2.25,2.5] under

x| ==x1+02(x; —x7/3 —x, +0.875),
.‘)CZ+ :=xp +0.2(0.08(x1 + 0.7 — 0.8x)),

Victor Magron SDP Approximations of Reachable Sets 22/23



FitzHugh-Nagumo Neuron Model

Trajectories from X := [1,1.25] x [2.25,2.5] under

x| ==x1+02(x; —x7/3 —x, +0.875),
.‘)CZ+ :=xp +0.2(0.08(x1 + 0.7 — 0.8x)),

Victor Magron SDP Approximations of Reachable Sets 22/23



FitzHugh-Nagumo Neuron Model
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Conclusion

 Certified Approximation of the whole reachable set X*
© Cannot avoid to approximate attractor set X"

) o mt2rd .
© Computational complexity: (") SDP variables

@ Structure sparsity can be exploited
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Conclusion

Further research:

m Infinite Primal LP characterization of X* only ?

m Discrete finite-time, continuous finite/infinite horizon ?
VUse previous framework approximating;:

region of attraction

maximum controlled invariant
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End

Thank you for your attention!
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