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Notation

M ∈ Rn×n

q ∈ Rn

The Linear Complementarity Problem (LCP) consists in
finding vectors z ≥ 0 and s ≥ 0 such that

Mz + q = s

zs = 0
,

zs = (zi si )1≤i≤n.

(z , s) are feasible if they verify z , s ≥ 0 and Mz + q = s.

M satisfies a monotonicity property : all vectors z ∈ Rn and
s ∈ Rn that satisfy Mz − s = 0 have zT s ≥ 0.
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Linear Complementarity Problem : Applications

Several applications of LCP :

convex hulls in a plane, nash equilibrium in bimatrix games,
absolute value equation, optimality conditions of optimization
problems (Linear, Convex Quadratic )...

Monotoncity property of M :

P-matrix (unique solution)

Positive Semi-Definite
(feasible => solvable)

Skew-Symmetric (Linear
Programming)
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Interior-Point Method (IPM)

(LCP)

Mz + q = s

zs = 0

z , s ≥ 0
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Interior-Point Method (IPM)

Given µ ≥ 0

(LCP)µ

Mz + q = s

zs = µ

z , s ≥ 0

This system has a unique solution (z(µ), s(µ)) if the Interior Point
Condition holds.

Interior Point Condition :

∃z0, s0 such that s0 = Mz0 + q, z0 > 0, s0 > 0

(x(µ), s(µ))µ defines the central path, leading to the optimal
solution (µ→ 0).
IPMs follow the central path approximately.
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The most simple IPM : algorithm

Data:
an update parameter θ, 0 < θ < 1 ;
Begin ;
z = z0, s = s0, µ := µ0 ;
while nµ ≥ ε do

µ := (1− θ)µ;
(z , s) := (z , s) + (∆z ,∆s);

end
Algorithm 1: Full Newton step IPM

(∆z ,∆s) is the unique solution of the system{
M∆z = ∆s

z∆s + s∆z = µ− zs
(1)
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The most simple IPM : : illustrations
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The central path and trajectory of both methods

chemin phi

chemin barrier log

Complexity for monotone LCP to get zT s ≤ nε : O(
√
n log(nε ))

where θ = O( 1√
n

) has a fixed value.
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IPM : New Directions

Given µ ≥ 0,

(LCP)

Mz + q = s

ϕ(zs) = µ

z , s ≥ 0

Introduced in 03’ by Darvay.

IPM with full Newton step has a complexity in O(
√
n log(nε ))

for ϕ(.) =
√
.

Warning :

It is not the same as zs = ϕ−1(µ) since we take a Newton step.
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Figure : Level surface of zs
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Figure : Level surfaces of zs and
√
zs
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Let ϕ : Rn → Rn, such that ϕ(0) = 0, ϕ ∈ C 2, concave and
invertible.

Figure : Level surfaces of zs and ϕ(zs) = zs
zs+0.5
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Let ϕ : Rn → Rn, such that ϕ(0) = 0, ϕ ∈ C 2, concave and
invertible.

Theorem :

Let µ̄ ≥ µ0 = (z0)T s0

n . After at most

O(
√
n log(

n

ε
))

iterations, we have ϕ(zs)T e ≤ nε. The algorithm generates a
sequence of update parameter θk , guarantees feasibility of the
iterates and quadratic convergence of the Newton process.

Concavity of ϕ gives that for zs sufficiently small

ϕ(zs) ≈ zsϕ′(0) (2)
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Quadratic convergence of the Newton process

δ(z+s+, µ) ≤ δ(zs, µ)2

where δ(zs, µ) is a proximity measure.

classical proximity measure :
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new proximity measure :
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Level curves of the phi-proximity measure with mu=0.1 in 2 dimensions
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Level curves of the barrier-proximity measure with mu=0.1 in 2 dimensions
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Figure : Level curves for both proximity measures
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Level curves of the phi-proximity measure with mu=mu 0 /10 in 2 dimensions
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Level curves of the barrier-proximity measure with mu=1/10 in 2 dimensions
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Figure : Level curves for both proximity measures at µ0/µ̄ and µ0



Problem formulation Interior-point methods New directions Perspectives

Behaviour on an example for LO

We will consider ϕ(t) = t
t+1 so ϕ′(t) = 1

(1+t)2
.

Observations :

sequence of update
parameters

central path

domain of quadratic
convergence
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Behaviour on an example for LO

The central path and the iterates of both methods.
One should note that this figure is presented in the projection of
the space of zs in R2.

zs(1)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

z
s
(2

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
The central path and trajectory of both methods

central path

chemin phi

chemin barrier log



Problem formulation Interior-point methods New directions Perspectives

Behaviour on an example for LO

The sequence of update parameter, which converge to its upper
bound 1√

2n+1
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Behaviour on an example for LO

The level curves which guarantees quadratic convergence of the
Newton process.
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Behaviour on an example for LO

Figure : Step : classical-direction. ’*’ before Newton, ’o’ after Newton.
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Figure : Step : classical-direction. ’*’ before Newton, ’o’ after Newton.



Problem formulation Interior-point methods New directions Perspectives

Behaviour on an example for LO

Figure : Step : ϕ-direction. ’*’ before Newton, ’o’ after Newton.
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Behaviour on an example for LO

Figure : Step : ϕ-direction. ’*’ before Newton, ’o’ after Newton.
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Behaviour on an example for LO

Figure : Step : ϕ-direction. ’*’ before Newton, ’o’ after Newton.
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Behaviour on an example for LO

All the computation with a lower value of µ → linear systems
becomes harder to solve ?
Condition number in function of µ (so for our direction it is µ/µ0).
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Behaviour of both system is pretty much the same.



Problem formulation Interior-point methods New directions Perspectives

Behaviour on an example for LO

All the computation with a lower value of µ → linear systems
becomes harder to solve ?
Condition number in function of µ (so for our direction it is µ/µ0).

mu

-12 -10 -8 -6 -4 -2 0

c
o
n
d
it
io

n
 n

u
m

b
e
r

×10 4

0

2

4

6

8

10

12

14
Condition number of the linear system

phi

barrier log

Behaviour of both system is pretty much the same.



Problem formulation Interior-point methods New directions Perspectives

Sum up

An new IPM method with full Newton step :

different steps

polynomial time with the best known bound

works for a large family of functions ϕ

→ Numerical tests to determine which of those perform best ?

And now what ?
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What now ? Initialization

Embedding technique

Larger system with artificial initial point

Infeasible IPM

s −Mz − q = ν(s0 −Mz0 − q), z , s ≥ 0, zs = µ , (3)

asymptotically feasible.
Recent developments :

improved bound for LO [Roos 15’]

ϕ(.) =
√
., [Mansouri et al., 14’ and 15’]
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What now ? Large Update method

Large Update method

Small Update : takes all the Newton step => find θ.

Large Update : choose θ => takes a damped Newton step.

Challenge : ”the irony of IPMs”

Small-update methods : O(
√
n log(nε )) - inefficient in practice

Large-update methods : O(n log(
√
n log(n)

ε )) - very efficient in
practice
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What now ? A new hobby, relaxation methods for MPCC

Mathematical Program with Complementarity Constraint (MPCC)

(MPCC)


min
x∈Rn

f (x)

hi (x) = 0, i = 1, ...m

gi (x) ≤ 0, i = 1, ...p

0 ≤ Gi (x) ⊥ Hi (x) ≥ 0, i = 1, ...q

, (4)
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Merci de votre attention !

Figure : Central path on the Klee-Minty cube
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