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Classical Optimal Transportation (Monge 1781-Kantorovich
1942-Brenier 1989)

Let us consider two probability measures µ, ν ∈ P(Rd) and a continuous function
c : Rd × Rd → R then the Monge problem (M) is de�ned as follows

inf{
∫
Rd c(x ,T (x))dµ(x)| T : Rd → Rd T]µ = ν}

Notice that no mass splitting occurs: all the mass on x must be sent onto T (x). The high
non-linearity of the constraint makes this problem quite di�cult to treat. Thus, in 1942
Kantorovich introduced a relax formulation (MK) which allows mass splitting

inf{
∫
Rd×Rd c(x , y)dγ(x , y)| γ ∈ Π(R2d , µ, ν)}

where Π(R2d , µ, ν) := {γ ∈ P(R2d)| π1,]γ = µ π2,]γ = ν}.

Remark

If the optimal γ has the form γT = (Id ,T )]µ (it's a deterministic plan) then T is an
optimal map for (M).
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The Multi-Marginal Optimal Transportation

Let us take N probability measures µi ∈ P(Rd) with i = 1, · · · ,N and c : RNd → [0,+∞] a
continuous cost function. Then the multi-marginal Monge (MN) problem reads as:

inf{
∫
Rd c(x ,T2(x), · · · ,TN(x))dµ1(x)| Ti : Rd → Rd Ti,]µ1 = µi}

And its relaxed formulation of (MKN)

inf{
∫
RdN c(x1, · · · , xN)dγ(x1, · · · , xN)| γ ∈ Π(RdN , µ1, · · · , µN)}

where Π(RdN , µ1, · · · , µN) denotes the set of couplings γ(x1, · · · , xN) having µi as marginals.
One can also looks at the dual formulation of (MKN)

sup{
∑N

i=1

∫
Rd φidµi (xi )| φφφ ∈ KN}.

where KN is the set of all N−tuples φφφ = (φ1, · · · , φN) such that φi ∈ L1(Rd , µi ) and∑N

i=1 φi (xi ) ≤ c(x1, · · · , xN) ∀{x}Ni=1.

Remark

If the optimal γ has the form γT = (Id ,T2, · · · ,TN)]µ1 (it's a deterministic plan) then Ti

are optimal maps for (MN).
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The discretized Monge-Kantorovich problem

Let's take cj1,··· ,jN = c(xj1 , · · · , xjN ) ∈ ⊗N
1 RM (M are the gridpoints used to

discretize Rd) then the discretized (MKN), reads as

min{
M∑

(j1,··· ,jN)=1

cj1,··· ,jNγj1,··· ,jN |
∑
jk ,k 6=i

γj1,··· ,ji−1,ji+1,··· ,jN = µiji } (1)

and the dual problem

max{
N∑
i=1

M∑
ji=1

uijiµ
i
ji
|

N∑
k=1

ukjk ≤ cj1,...,jN ∀(j1, · · · , jN) ∈ {1, · · · ,M}N}. (2)

Drawbacks

The primal has MN unknowns and M × N linear constraints.

The dual has M × N unknowns, but MN constraints.
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The Regularised OT problem

Numerics for the multi-marginal problem have not been extensively developed. Here, we
present a numerical method to solve the regularised (Benamou,Carlier, Cuturi, N.,
Peyré-'15) optimal transport problem (let us consider, for simplicity, 2 marginals)

min
γ∈C
〈C , γ〉+

{
ε
∑

ij γij(log(γij)− 1) γ > 0

+∞ otherwise
. (3)

where C is the matrix associated to the cost, γ is the discrete transport plan and C is the
intersection between C1 = {γ |

∑
j γij = µi} and C2 = {γ |

∑
i γij = νj}. The problem

(3) can be re-written as

minγ∈C KL(γ|γ̄)

where KL(γ|γ̄) =
∑

i,j γij(log
γij
γ̄ij
− 1) is the Kullback-Leibler distance and γ̄ij = e

−
cij
ε .
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Theorem

The optimal plan γ? has the form γ?ij = a?i b
?
j γ̄ij . Moreover a?i and b?j can be

uniquely determined (up to a multiplicative constant) as follows

b?j =
νj∑
i a
?
i γ̄ij

, a?i =
µi∑
j b
?
j γ̄ij

.

The IPFP procedure

bn+1
j =

νj∑
i a

n
i γ̄ij

, an+1
i =

µi∑
j b

n+1
j γ̄ij

.

Theorem

an and bn converge to a? and b?

Remark (1)

ui = εlog(ai ) and vj = εlog(bj) are the (regularised) Kantorovich potentials.
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The extension to the Multi-Marginal problem

The problem (3), in the multi-marginal framework, becomes

min
γ∈C

KL(γ|γ̄) (4)

where KL(γ|γ̄) =
∑

i,j,k γijk(log
γijk
γ̄ijk
− 1) is the Kullback-Leibler distance,

γ̄ijk = e
−
cijk
ε and C =

⋂3
i=1 Ci (i.e. C1 = {γ |

∑
j,k γijk = µ1i }).

The optimal plan γ? becomes γ?ijk = a?i b
?
j c
?
k γ̄ijk a?i , b

?
j and c?k can be

determined by the marginal constraints. And the IPFP becomes

bn+1
j =

µ2j∑
ik a

n
i c

n
k γ̄ijk

, cn+1
k =

µ3k∑
ij a

n
i b

n+1
j γ̄ijk

, an+1
i =

µ1i∑
jk b

n+1
j cn+1

k γ̄ijk
.
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Euler Equations

In 1755 Euler introduced the equations governing the motion of an incompressible
�uid �ows. Take a domain D ⊆ Rd and an interval I = [0,T ] of time then we
have

∂tu + (u · ∇)u = −∇p, (5)

div(u) = 0, (6)

u · n = 0 on ∂D (7)

where u : I × D → Rd is the velocity �eld and p : I × D → R is the pressure.
Consider now the �ow g : I × D → D of the velocity �eld (we want to describe
the motion of �uid particles in Lagrangian coordinates), then it is de�ned ∀t ≥ 0
by the following ODE:

g(0, x) = x , ∂tg(t, x) = u(t, g(t, x)). (8)
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Arnold's principle

Remark

The incompressibility constraint divu = 0 implies

det(∇g(t, x)) = 1 ∀t ∈ [0,T ],

so g(t) := g(t, ·) belongs to the space SDi� (D) of orientation and
measure-preserving di�eomorphisms of D.

In 1966 Arnold interpreted the Euler equations in Lagrangian coordinates as the
geodesic equation on SDi� (D) equipped with the L2 metric. Take an initial
g? = Id and a �nal position g? = h(x), then the geodesic equation (A) is de�ne
as follows:

inf{
∫ T

0

‖ġ‖2dt | g(t, x) ∈ H1([0,T ],SDi� ), g(0, x) = Id , g(T , x) = h(x)}.

(9)
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Brenier's relaxation

Consider the space of continuous paths Ω := C([0,T ],D) and et(ω) := ω(t) the
evaluation map at time t ∈ [0,T ], then the geodesic equation admits a convex
relaxation (B) posed on probability measures on Ω

inf{T
2

∫
Ω

∫ T

0

|ω̇|2dtdγ(ω) γ ∈ P(Ω) (10)

et,]γ = LD , ∀t ∈ [0,T ] (11)

(e0, eT )]γ = (Id , h)]LD} (12)

Let us �x the number of time steps (indeed we are discretizing the time interval
I = [0,T ]) then the time discretization of (B) becomes

inf
T

N

∫
D

N∑
i=1

|xi − xi−1|2dγ(x1, · · · , xN) s.t. (13)

πi,]γ = LD ∀i = 1, · · · ,N (14)

π0T ,]γ = (Id , h)]LD . (15)
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From Brenier's problem to Multi-Marginal Optimal
Transport

Moreover the last constraint can be taken into account by de�ning the following cost function

c(x1, · · · , xN) =
N∑
i=1

|xi − xi−1|2 + |xN − h(x1)|2, (16)

then the problem can be re-written as a multi-marginal optimal transport problem

inf{
∫
D

c(x1, · · · , xN)dγ(x1, · · · , xN)| γ ∈ Π(RdN ,LD)}, (17)

where Π(RdN ,LD) is the set of all probability measures on RdN whose N marginals are all
equal to LD . Remarks:

We can solve the multi-marginal problem by using the IPFP.
If we add an entropy term, we cannot expect deterministic transport plans.
In Brenier '89- Brenier, Roesch '98- Merigot, Mirebeau '15 the authors developed di�erent
numerical methods to solve (B) in d = 1 and d = 2 based on permutations and
semi-discret optimal transport, respectively.
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1D Numerical experiments

We take D = [0, 1] and we plot the coupling γ0,t = (e0, et)]γ for t = i
N

i = 1, · · · ,N and N = 32

Figure: Generalized solution

h = x + 1

2
mod1 and T = 1

Figure: Generalized solution

h = 1− x and T = 1.
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2D Numerical experiments - Unit disk

Take D = B1(0) ⊂ R2, then if T = π we �nd that h = −Id . Then, if we consider
the coupling γ0,t(x , y), we plot η(y) = γ0,t(x̄ , y) where x̄ is �xed.
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2D Numerical experiments - Beltrami Flow

Beltrami �ow: u(x1, x2) = (−cos(πx1)sin(πx2), sin(πx1)cos(πx2)). g? = Id[0,1]2

and g? is obtained by solving ġ = u in [0,T ]. Then we consider the coupling
γ0,t(x , y) and we plot η(y) =

∫
Dk

γ0,t(x , y)dx where Dk = [k, k+1
3 ]× [0, 1]

k = 0, 1, 2.

Figure: ODE Solution for Beltrami

�ow T = 0.9.
Figure: Generalized solution for

Beltrami �ow T = 0.9.
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2D Numerical experiments - Beltrami Flow

Beltrami �ow: u(x1, x2) = (cos(πx1)sin(πx2), sin(πx1)cos(πx2)). g? = Id[0,1]2 and
g? is obtained by solving ġ = u in [0,T ]

Figure: ODE Solution for Beltrami

�ow T = π.
Figure: Generalized solution for

Beltrami �ow T = π.
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Conclusion

Conclusion:

A numerical method to solve Multi-Marginal OT problems

We can visualize the split of mass

On-going work:

3D numerical simulation

Has the entropy a physical meaning? Of course (the next time)
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