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Error bound and KL property

Some notations

Denote H is Hilbert space . 〈, 〉 is a scalar product and ‖.‖ is
associated norm.

∂f : Subdifferential.

prox f : Proximal operator.

dist (x, S) = miny∈S ‖x− y‖.
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Error bound and KL property

Definition : Error Bound

f satisfies a local error bound if there exists a nondecreasing function
ϕ : [0,+∞[→ [0,+∞[ and r0 > 0 such that

ϕ ([f(x)]+) ≥ dist (x, S),∀x ∈ [0 ≤ f ≤ r0],

where S = {x ∈ Rn|f(x) ≤ 0}, [a]+ = max {a, 0}.
ϕ : residual function

There are a lot of researchs on error bounds : A. Auslender, J.P
Crouzeix, J.N Corvellec, A.J Hoffman,P. Tseng, Z.Q Luo, J.S Pang,...
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Error bound and KL property

Notation

Let η > 0 and set

K(0, η) =
{
ϕ ∈ C0[0, η) ∩ C1(0, η), ϕ(0) = 0, ϕ is concave, ϕ′ > 0

}
.

Figure: ϕ
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Error bound and KL property

Definition : Non-smooth KL property

f : H → (−∞,∞] has Kurdyka- Lojasiewicz (KL) property at x̄ if
there exists a neighbour U(x̄), η > 0 and a function ϕ ∈ K(0, η) such
that

ϕ′(f(x)− f(x̄))dist(0, ∂f(x)) ≥ 1, (1)

for all x ∈ U(x̄) ∩ [f(x̄) < f < f(x̄) + η].
ϕ : Desingularizing function for f at x̄.
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Error bound and KL property

Remark

If f(x̄) = 0 then (1) can be rewritten ‖∂0(ϕ ◦ f)‖ ≥ 1, where
‖∂0f(x)‖ = inf ‖∂f(x)‖.
When ϕ(s) = cs1−θ, θ ∈ (0, 1) then (1) is called  Lojasiewicz
inequality, ‖∂0f(x)‖θ− ≥ c|f(x)|.

Figure: f and ϕ ◦ f
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Error bound and KL property

The KL function class

If f is analytic or smooth and semialgebraic, it satisfies the
Lojasiewicz property around each point of Rn, (S.  Lojasiewicz,
Hormander (1968), K. Kurdyka(1998)).

f : Rn → R ∩ {+∞} lower semicontinuous and semi-algebraic
(non-smooth), then f has the KL property around each point, (J.
Bolte-A. Daniilidis-A. Lewis, 2006).
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Error bound and KL property

Applications of KL property for first order method

With the KL property, we can obtain the convergence of some
methods (and its convergence rate). This can be seen in some
references.

Line-search, trust-region, (P.A. Absil-R. Mahony-B.Andrew
2005).

Proximal method, (H.Attouch-J.Bolte, 2009).

Forward-Backward method, (H. Attouch-J. Bolte-B.F. Svaiter
2014,).

Proximal Alternating Linearized Minimization,
(J.Bolte-M.Teboulle- S.Sabach, 2014).

KL has a lot of applications, however it is not easy to find the
desingularizing ϕ, even the exponent θ in the  Lojasiewicz inequality.
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Error bound implies KL

Theorem

Let f : H →]−∞,+∞] be a proper, convex and
lower-semicontinuous, with min f = 0. Let r0 > 0, ϕ ∈ K(0, r0), c > 0,
ρ > 0 and x̄ ∈ argmin f .

(i) If ϕ′ (f(x)) ‖∂0f(x)‖ ≥ 1 for all x ∈ [0 < f < r0] ∩B(x̄, ρ), then

ϕ (f(x)) ≥ dist (x, S), ∀x ∈ [0 < f < r0] ∩B(x̄, ρ).

(ii) Conversely, if sϕ′(s) ≥ cϕ(s) for all s ∈ (0, r0) and
ϕ(f(x)) ≥ dist (x, S) for all x ∈ [0 < f < r0] ∩B(x̄, ρ), then

ϕ′ (f(x)) ‖∂0f(x)‖ ≥ c, ∀x ∈ [0 < f < r0] ∩B(x̄, ρ).
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Descent method

Definition : Subgradient descent sequence

(xk)k∈N in H is said subgradient descent sequence for
f : H →]−∞,∞] if x0 ∈ domf and there exist a, b > 0 such that :

(H1) (Sufficient decrease condition) For each k ≥ 1,

f(xk) + a‖xk − xk−1‖2 ≤ f(xk−1).

(H2) (Relative error condition) For each k ≥ 1, there is
ωk ∈ ∂f(xk) such that

‖ωk‖ ≤ b‖xk − xk−1‖.

This definition encompasses many methods

Projection gradient.

Forward-Backward.

Proximal alternating linearised minimization.
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Descent method

Notation

Fix f convexe, KL function (with ϕ is the desingalurizing function)
and a descent method.
Set ψ = (ϕ|[0,r0])−1 : [0, α0]→ [0, r0] which ψ′ is l-Lipschitz
continuous (on [0, α0]) and ψ′(0) = 0.

Figure: ψ

Set c =
√
1+2l a b−2−1

l ,
(a > 0, b > 0 are parameters of descent method).
Take α0 = ϕ(f(x0)−min f), we define (αk)k∈N by

αk+1 = argmin

{
ψ(u) +

1

2c
(u− αk)2 : u ≥ 0

}
= prox cψ(αk),∀k ≥ 0.
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Descent method

Main result

Theorem (Complexity of descent sequences for convex KL functions)

f : H →]−∞,∞] be a proper lower-semicontinuous convex function,
which have the KL property on [min f < f < min f + η], argmin f 6= ∅.
(xk)k∈N be a subgradient descent sequence with f(x0) = r0 ∈ (0, η).
Then, xk converges to some minimizer x∗ and, moreover,

f(xk)−min f ≤ ψ(αk) ∀k ≥ 0,

‖xk − x∗‖ ≤
b

a
αk +

√
ψ(αk−1), ∀k ≥ 1.
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Descent method

Our work / our methodology

Take a first order method for a problem min f and set r0 = f(x0)

Derive an error bound for the objective

f(x)−min f ≥ ψ(dist (x, argmin f))

for all x such that f(x) ≤ r0.

Study the worst case one dimensional method

αk = argmin

{
cψ(s) +

1

2
(s− αk−1)2 : s ≥ 0

}
, α0 = ϕ(f(x0)),

where c is a constant (easily) computed from the parameters of
the first order method.

Our complexity result asserts that

f(xk)−min f ≤ ψ(αk) = ψ ◦ prox cψ ◦ . . . ◦ prox cψ(ϕ(f(x0)).
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Example : The l1-regularized least squares problem

Problem

min
Rn

{
f(x) = µ‖x‖1 +

1

2
‖Ax− b‖22

}
,

where A ∈ Rm×n and b ∈ Rm. We denote

Ã = [A, 0Rm×1 ] ∈ Rm×(n+1), b̃ = (b1, . . . , bm, 0) ∈ Rm+1.

µ̃ = (0, . . . , 0, µ) ∈ Rn+1, x̃ = (x, y) ∈ Rn+1, R̃ = (0, . . . , 0, R) ∈
Rn+1.

M =

[
E −1R2n×1

0R1×n 1

]
is a matrix of size

(2n + 1)× (n+ 1), where E is a matrix of size 2n × n whose rows
are all possible distinct vectors of size n of the form
ei = (±1, . . . ,±1) for all i = 1, . . . , 2n. The order of the ei being
arbitrary.
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Calculating error bound

Using the work of Beck-Shtern, 2015 :

Lemma

Fix R > ‖b‖2
2µ . Then, for all x ∈ Rn such that ‖x‖1 ≤ R, we have

f(x)− f(x∗) ≥ γR
2

dist 2(x, S),

where γ−1R = ν2
(

1 +
√
5
2 µR+ (R‖A‖+ ‖b‖) (4R‖A‖+ ‖b‖)

)
, and ν

is the Hoffman constant associated with (M, [ÃT , µ̃T ]T ).
Therefore, f is a KL function on the `1 ball of radius R and admits

ϕ(s) =
√

2γ−1R s as desingularizing function.
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Complexity

Take x0 ∈ Rn, the Forward-Backward method applied to f is

xk+1 = prox λkµ‖·‖1
(
xk − λk(ATAxk −AT b)

)
for k ≥ 0,

where 0 < λ− ≤ λk ≤ λ+ < 2/L, and L = ‖ATA‖. Set

ζ =

√
1 + γ

(
2
λ+ − L

) (
1
λ− + L

)−2 − 1

γ
.

Complexity and convergence rates

(xk)k∈N converges to a minimizer x∗ of f and satisfies,

f(xk)−min f ≤ 1

(1 + γζ)2k
(f(x0)−min f),∀k ≥ 0,

‖x∗ − xk‖ ≤
√

2(f(x0)−min f)
√
γ (1 + γζ)k−1

(√
γ

2
+

2(1 + Lλ−)

(2− Lλ+)(1 + ζγ)

)
,∀k ≥ 1.
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More details :
Jérôme Bolte, Trong Phong Nguyen, Juan Peypouquet, Bruce Suter :
From error bounds to the complexity of first-order descent methods
for convex functions, http ://arxiv.org/pdf/1510.08234.pdf
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