The Splitting Game: value and optimal strategies

Miquel Oliu-Barton

Université Paris-Dauphine, Ceremade

SMAI - MODE 2016

23 mars 2016

Toulouse

• • = • • = •

Introduction

- General framework
- Games with incomplete information
- 2 Literature and Contributions

3 The Splitting Game

- Definition
- Results
- Remarks and Extensions

General context

Game = interdependent strategic interaction between players

- Nature of the interaction
 - Cooperative
 - Evolutionary
 - Non-cooperative
- Number of players
 - Infinitely many (non-atomic)
 - N > 2 players
 - 2 players
- Players' preferences
 - Structure (potential)
 - Identical (coordination, mean field, congestion)
 - Opposite (zero-sum)

э

・ 伊 ト ・ ヨ ト ・ ヨ ト …

General context

Game = interdependent strategic interaction between players

- Nature of the interaction
 - Cooperative
 - Evolutionary
 - Non-cooperative
- Number of players
 - Infinitely many (non-atomic)
 - N > 2 players
 - 2 players
- Players' preferences
 - Structure (potential)
 - Identical (coordination, mean field, congestion)
 - Opposite (zero-sum)

э

・ 何 ト ・ ヨ ト ・ ヨ ト

Zero-sum games

A zero-sum game is a triplet (S, T, g), where

- S is the set of actions of player 1
- T is the set of actions of player 2
- $g: \mathcal{S} imes \mathcal{T}
 ightarrow \mathbb{R}$ is the payoff function

The game is said to be finite when $S = \Delta(I)$ and $T = \Delta(J)$ are probabilities on finite sets (g is a matrix and actions are mixed strategies) It admits a value when

$$\sup_{s\in S} \inf_{t\in T} g(s,t) = \inf_{t\in T} \sup_{s\in S} g(s,t)$$

イロト 不得下 イヨト イヨト 二日

Zero-sum games

A zero-sum game is a triplet (S, T, g), where

- S is the set of actions of player 1
- T is the set of actions of player 2
- $g: \mathcal{S} imes \mathcal{T}
 ightarrow \mathbb{R}$ is the payoff function

The game is said to be finite when $S = \Delta(I)$ and $T = \Delta(J)$ are probabilities on finite sets (g is a matrix and actions are mixed strategies) It admits a value when

$$\sup_{s\in S} \inf_{t\in T} g(s,t) = \inf_{t\in T} \sup_{s\in S} g(s,t)$$

We are interested in the following two questions:

- (a) Existence and description of the value
- (b) Existence and description of optimal strategies (or ε -optimal)

Zero-sum games with incomplete information

- Consider a finite family of matrix games $(G^k)_{k \in K}$, where $G^k = (I, J, g^k)$ corresponds to the state of the world occurring with probability p^k

- The state of the world stands for the player's types, their beliefs about the opponents' types, and so on

- Each player has an information set, i.e. a partition of the state of world

Example: three states and information sets $\{1\},\{2,3\}$ and $\{1,2\},\{3\}$

 $\begin{array}{ccc} p^1 & p^2 & p^3 \\ \hline G^1 & G^2 & G^3 \end{array}$

– A state of the world occurs according to $p \in \Delta(K)$; player 1 knows whether it is $\{1\}$ or $\{2,3\}$, and player 2 knows whether it is $\{1,2\}$ or $\{3\}$

An equivalent formulation

Alternatively, the players' information structure (i.e. the set of states, the information sets and the probability p) can represented as follows:

- The set of possible types is a product set K × L and the payoff function depend on the pair of types, i.e. G^{kℓ} : I × J → ℝ
- $\pi \in \Delta(K imes L)$ is a probability measure on the set of types
- A couple of types (k, ℓ) is drawn according to π. Player 1 is informed of k and player 2 of ℓ

In the previous example: ${\it K}={\it L}=\{1,2\}$ and

$$\pi = \begin{array}{c|c} p^1 & p^3 \\ \hline p^2 & 0 \end{array}$$

Remarks. – The players have private, dependent information – If *L* is a singleton, the incomplete information is **on one side**

Repeated games with incomplete information

- Aumann and Maschler consider the repetition of games with incomplete information to analyze the strategic use of private information
- A repeated game with incomplete information is described by a 6-tuple (I, J, K, L, G, π) where I and J are the sets of actions, K and L the set of types, $G = (G^{k\ell})_{k,\ell}$ the payoff function and π a probability on $K \times L$
- The game is played as follows. First, a couple (k, ℓ) is drawn according to π and each player is informed of one coordinate. Then, the game $G^{k\ell}$ is played over and over: at each stage $m \ge 1$, knowing the past actions, the players choose actions (i_m, j_m)

(日) (周) (日) (日) (日)

Strategies and evaluation of the payoff

- Strategies are functions from histories to mixed actions. Here $\sigma = (\sigma_m)_m$ where $\sigma_m : \mathcal{K} \times (I \times J)^{m-1} \to \Delta(I)$ and similarly τ stands for strategy of player 2
- Let $\mathbb{P}_{\sigma,\tau}^{\pi}$ be the unique probability distribution on finite plays $h_m = (k, \ell, i_1, j_1, \dots, i_{m-1}, j_{m-1})$ induced by π , σ and τ
- Player 1 maximizes $\gamma_{\theta}(\pi, \sigma, \tau) = \mathbb{E}_{\sigma, \tau}^{\pi}[\sum_{m \ge 1} \theta_m G^{k\ell}(i_m, j_m)]$ where $\theta_m \ge 0$ is the weight of stage m
- Two important cases: the *n*-stage game and the λ-discounted game which correspond to weights:

$$\left(rac{1}{n}\mathbb{1}_{\{m\leq n\}}
ight)_{m\geq 1}$$
 and $\left(\lambda(1-\lambda)^{m-1}
ight)_{m\geq 1}$

▲日▶ ▲帰▶ ▲ヨ▶ ▲ヨ▶ - ヨ - のなの

Approches: Horizon, Value and Strategies

• Fixed duration (fixed evaluation θ)

(a) ... (b) ...

• Asymptotic approach $(\sup_{m\geq 1}\theta_m \to 0)$

(a) ... (b) ...

• Uniform approach (the weights are "sufficiently small")

(a) ... (b) ...

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

Approches: Horizon, Value and Strategies

- Fixed duration (fixed evaluation θ)
 - (a) Description of the values
 - (b) Description of optimal strategies
- Asymptotic approach $(\sup_{m\geq 1}\theta_m \to 0)$
 - (a) Convergence of the values and caracterization of the limit
 - (b) Description of asymptotically optimal strategies
- Uniform approach (the weights are "sufficiently small")
 - (a) Existence of the uniform value
 - (b) Description of robust optimal strategies

ヘロト 人間ト ヘヨト ヘヨト

Main results on RGII (one or two sides)

Horizon Info	Asymptotic	Uniform
One side	$\lim_{ heta ightarrow 0} V_ heta = \operatorname{Cav} u$	$V_{\infty} = \operatorname{Cav} u$
	Aumann - Maschler 67	Aumann - Maschler 67
Two sides	$\lim_{ heta ightarrow 0}V_{ heta}=MZ(u)$ Mertens-Zamir 71	V_∞ does not exist

Ξ.

イロト イポト イヨト イヨト

The benefit of private information

The use of private information has two effects during the play

- (1) Transmits information about the true types. Indeed, let π_m be the conditional probability on $K \times L$ given h_m under $\mathbb{P}^{\pi}_{\sigma,\tau}$. The players jointly generate the martingale of posteriors $(\pi_m)_m$
- (2) Provides an instantaneous benefit

米田 とくほと くほと

The benefit of private information

The use of private information has two effects during the play

- (1) Transmits information about the true types. Indeed, let π_m be the conditional probability on $K \times L$ given h_m under $\mathbb{P}^{\pi}_{\sigma,\tau}$. The players jointly generate the martingale of posteriors $(\pi_m)_m$
- (2) Provides an instantaneous benefit \implies irrelevant in the long run:

$$\left|\gamma_{\theta}(\pi,\sigma,\tau) - \mathbb{E}_{\sigma,\tau}^{\pi} \left[\sum_{m \geq 1} \theta_m u(\pi_m)\right]\right| \leq C \left(\sup_{m \geq 1} \theta_m\right)^{1/2}$$

where $u(\pi)$ is the value of the average game $\sum_{k,\ell} \pi^{k\ell} G^{k\ell}$, i.e.

$$u(\pi) := \max_{x \in \Delta(I)} \min_{y \in \Delta(J)} \sum_{k,\ell} \pi^{k\ell} G^{k\ell}(x,y)$$

イロト イポト イヨト イヨト

The benefit of private information

The use of private information has two effects during the play

- (1) Transmits information about the true types. Indeed, let π_m be the conditional probability on $K \times L$ given h_m under $\mathbb{P}^{\pi}_{\sigma,\tau}$. The players jointly generate the martingale of posteriors $(\pi_m)_m$
- (2) Provides an instantaneous benefit \implies irrelevant in the long run:

$$\left|\gamma_{\theta}(\pi,\sigma,\tau) - \mathbb{E}_{\sigma,\tau}^{\pi} \left[\sum_{m \geq 1} \theta_m u(\pi_m)\right]\right| \leq C \left(\sup_{m \geq 1} \theta_m\right)^{1/2}$$

where $u(\pi)$ is the value of the average game $\sum_{k,\ell} \pi^{k\ell} G^{k\ell}$, i.e.

$$u(\pi) := \max_{x \in \Delta(I)} \min_{y \in \Delta(J)} \sum_{k,\ell} \pi^{k\ell} G^{k\ell}(x,y)$$

• The previous remark motivated the introduction of **the splitting** game by Sorin and Laraki 2001

M. Oliu-Barton (Paris-Dauphine)

- Consider the case |L| = 1 (i.e. player 1 is informed and player 2 is not)
- The initial probability can be seen as p ∈ Δ(K) and the possible games as (G^k)_{k∈K}
- Let $u(p) = \max_{x \in \Delta(I)} \min_{y \in \Delta(J)} \sum_{k \in K} p^k G^k(x, y)$

•
$$\left| V_{\theta}(p) - \sup_{(p_m)_{m \ge 1}} \mathbb{E}[\sum_{m \ge 1} \theta_m u(p_m)] \right| \le C (\sup_{m \ge 1} \theta_m)^{1/2}$$

・ロト ・聞ト ・ヨト ・ヨト

- Consider the case |L| = 1 (i.e. player 1 is informed and player 2 is not)
- The initial probability can be seen as p ∈ Δ(K) and the possible games as (G^k)_{k∈K}
- Let $u(p) = \max_{x \in \Delta(I)} \min_{y \in \Delta(J)} \sum_{k \in K} p^k G^k(x, y)$

•
$$\left| V_{\theta}(p) - \sup_{(p_m)_{m \ge 1}} \mathbb{E}[\sum_{m \ge 1} \theta_m u(p_m)] \right| \le C (\sup_{m \ge 1} \theta_m)^{1/2}$$

Taking the limit, we obtain a martingale optimization problem:

$$V(p) = \sup_{\mathbf{p}\in\mathcal{M}(p)} \mathbb{E}\left[\int_0^1 u(p_t)dt\right]$$

where $\mathcal{M}(p)$ is the set of càdlàg martingales with $\mathbf{p}_{0^-} = p$, a.s.

▲日▶ ▲帰▶ ▲ヨ▶ ▲ヨ▶ - ヨ - のなの

- Consider the case |L| = 1 (i.e. player 1 is informed and player 2 is not)
- The initial probability can be seen as p ∈ Δ(K) and the possible games as (G^k)_{k∈K}
- Let $u(p) = \max_{x \in \Delta(I)} \min_{y \in \Delta(J)} \sum_{k \in K} p^k G^k(x, y)$

•
$$\left| V_{\theta}(p) - \sup_{(p_m)_{m \geq 1}} \mathbb{E}[\sum_{m \geq 1} \theta_m u(p_m)] \right| \leq C \left(\sup_{m \geq 1} \theta_m \right)^{1/2}$$

Taking the limit, we obtain a martingale optimization problem:

$$V(p) = \sup_{\mathbf{p}\in\mathcal{M}(p)} \mathbb{E}\left[\int_0^1 u(p_t)dt\right]$$

where $\mathcal{M}(p)$ is the set of càdlàg martingales with $\mathbf{p}_{0^-} = p$, a.s. What is the value 2 What about optimal martingales?

What is the value ? What about optimal martingales?

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

- Consider the case |L| = 1 (i.e. player 1 is informed and player 2 is not)
- The initial probability can be seen as p ∈ Δ(K) and the possible games as (G^k)_{k∈K}
- Let $u(p) = \max_{x \in \Delta(I)} \min_{y \in \Delta(J)} \sum_{k \in K} p^k G^k(x, y)$

•
$$\left| V_{\theta}(p) - \sup_{(p_m)_{m \geq 1}} \mathbb{E}[\sum_{m \geq 1} \theta_m u(p_m)] \right| \leq C \left(\sup_{m \geq 1} \theta_m \right)^{1/2}$$

Taking the limit, we obtain a martingale optimization problem:

$$V(p) = \sup_{\mathbf{p}\in\mathcal{M}(p)} \mathbb{E}\left[\int_0^1 u(p_t)dt\right]$$

where $\mathcal{M}(p)$ is the set of càdlàg martingales with $\mathbf{p}_{0^-} = p$, a.s.

What is the value ? What about optimal martingales? What if there are constraints on the set of admissible martingales?

The splitting game (two sides, independent case)

- In the independent case, $\pi=p\otimes q$, with $p\in\Delta({\mathcal K})$ and $q\in\Delta(L)$
- The initial probability can be writen as (p,q)
- Let $u(p,q) = \operatorname{val}\left(\sum_{k,\ell} p^k q^\ell G^{k\ell}\right)$
- $|V_{ heta}(p,q) W_{ heta}(p,q)| \leq C ig(\sup_{m\geq 1} heta_m ig)^{1/2}$ where

$$W_{\theta}(p,q) = \sup_{(p_m)_m} \inf_{(q_m)_m} \mathbb{E}\left[\sum_{m \ge 1} \theta_m u(p_m,q_m)\right]$$

- 4 回 ト 4 ヨ ト 4 ヨ ト

The splitting game (two sides, independent case)

- In the independent case, $\pi=p\otimes q$, with $p\in\Delta({\mathcal K})$ and $q\in\Delta(L)$
- The initial probability can be writen as (p, q)
- Let $u(p,q) = \operatorname{val}\left(\sum_{k,\ell} p^k q^\ell G^{k\ell}\right)$
- $|V_{ heta}(p,q) W_{ heta}(p,q)| \leq C ig(\sup_{m\geq 1} heta_m ig)^{1/2}$ where

$$W_{\theta}(p,q) = \sup_{(p_m)_m} \inf_{(q_m)_m} \mathbb{E}\left[\sum_{m \ge 1} \theta_m u(p_m,q_m)\right]$$

What is the value ? What about optimal martingales?

イロト イポト イヨト イヨト

The splitting game (two sides, independent case)

- In the independent case, $\pi=p\otimes q$, with $p\in\Delta({\mathcal K})$ and $q\in\Delta(L)$
- The initial probability can be writen as (p,q)
- Let $u(p,q) = \operatorname{val}\left(\sum_{k,\ell} p^k q^\ell G^{k\ell}\right)$
- $|V_{ heta}(p,q) W_{ heta}(p,q)| \leq C ig(\sup_{m \geq 1} heta_m ig)^{1/2}$ where

$$W_{ heta}(p,q) = \sup_{(p_m)_m} \inf_{(q_m)_m} \mathbb{E}\left[\sum_{m\geq 1} heta_m u(p_m,q_m)
ight]$$

What is the value ? What about optimal martingales?

- The independent SG is defined and studied by Laraki 2001

Main results

- (1) Existence of the value $W_{\lambda}(p,q)$
- (2) Convergence of $W_{\lambda}(p,q)$ to $\lim_{\lambda o 0} V_{\lambda} = MZ(u)$
- (3) Variational characterization of MZ(u)

Further results

Two sides SG

• Cardaliaguet, Laraki and Sorin 2011 prove the convergence of $W_{ heta}(p,q)$ to MZ(u) as heta o 0

3

・ 伺 ト ・ ヨ ト ・ ヨ ト

Further results

Two sides SG

• Cardaliaguet, Laraki and Sorin 2011 prove the convergence of $W_{ heta}(p,q)$ to MZ(u) as heta o 0

One side, time-dependent SG

• In the framework of continuous-times games, Cardaliaguet and Rainer 2009 study the splitting game

$$V(t_0,p) = \sup_{\mathbf{p}\in\mathcal{M}(p)} \mathbb{E}\left[\int_{t_0}^1 u(t,p_t)dt\right]$$

• Characterization of the value and of an optimal martingale

・ 戸 ト ・ ヨ ト ・ ヨ ト

Further results

Two sides SG

• Cardaliaguet, Laraki and Sorin 2011 prove the convergence of $W_{ heta}(p,q)$ to MZ(u) as heta o 0

One side, time-dependent SG

• In the framework of continuous-times games, Cardaliaguet and Rainer 2009 study the splitting game

$$W(t_0, p) = \sup_{\mathbf{p} \in \mathcal{M}(p)} \mathbb{E}\left[\int_{t_0}^1 u(t, p_t) dt\right]$$

• Characterization of the value and of an optimal martingale Two sides, time-dependent SG

• CLS 11 prove the convergence of $W_{ heta}(t,p,q)$ as heta
ightarrow 0 and characterize the limit

イロト イポト イヨト イヨト

The splitting game: uniform value and optimal strategies

• Definition of dependent splitting game, existence of the value $W_{ heta}(\pi)$

The splitting game: uniform value and optimal strategies

- Definition of dependent splitting game, existence of the value $W_{ heta}(\pi)$
- Convergence of $W_{ heta}(\pi)$ to MZ(u) as heta
 ightarrow 0, for general π
- Convergence of $V_{ heta}(\pi)$ to MZ(u) as heta
 ightarrow 0, for general π

The splitting game: uniform value and optimal strategies

- Definition of dependent splitting game, existence of the value $W_{ heta}(\pi)$
- Convergence of $W_{ heta}(\pi)$ to MZ(u) as heta
 ightarrow 0, for general π
- Convergence of $V_{ heta}(\pi)$ to MZ(u) as heta
 ightarrow 0, for general π
- A comparison principle for the the uniqueness of a solution to MZ

The splitting game: uniform value and optimal strategies

- Definition of dependent splitting game, existence of the value $W_ heta(\pi)$
- Convergence of $W_{ heta}(\pi)$ to MZ(u) as heta
 ightarrow 0, for general π
- Convergence of $V_{ heta}(\pi)$ to MZ(u) as heta o 0, for general π
- A comparison principle for the the uniqueness of a solution to MZ
- Existence of the uniform value in the SG
- Exhibition of a couple of optimal strategies with the additional property that the martingale $(\pi_m)_m$ is constant after stage 2

・ 同 ト ・ ヨ ト ・ ヨ ト

The splitting game

- The splitting game is a stochastic game played on $\Delta(K \times L)$, and where the actions are splittings
- It is described by a 7-tuple $(S, A, B, u, \Phi, \pi, \theta)$ where
 - $S = \Delta(K imes L)$ is the set of states
 - A and B are the sets of splittings
 - $u: \mathcal{S}
 ightarrow \mathbb{R}$ is the payoff function
 - $\Phi: S imes A imes B o \Delta(S)$ is the transition function
 - $\pi \in S$ is the initial state
 - $\theta = (\theta_m)_m$ is the sequence of weights for the stages
- Strategies are functions from finite histories into splittings
- Player 1 maximizes $\mathbb{E}_{\sigma,\tau}^{\pi}[\sum_{m\geq 1}\theta_m u(\pi_m)]$ where $\mathbb{P}_{\sigma,\tau}^{\pi}$ is the unique probability distributions on finite histories induced by π, σ, τ
- We denote the maxmin and minmax by $W^-_ heta(\pi)$ and $W^+_ heta(\pi)$

The splittings

- For any $\pi \in \Delta(K \times L)$ let
 - Let $\pi^{\kappa} \in \Delta(\kappa)$ be its marginal on κ
 - Let $\pi^{L|K} \in \Delta(L)^K$ be the matrix of conditionals on L given $k \in K$
 - Let $\pi^{L} \in \Delta(L)$ be its marginal on L
 - Let $\pi^{K|L} \in \Delta(K)^L$ be the matrix of conditionals on K given $\ell \in L$

э.

The splittings

- For any $\pi \in \Delta(K \times L)$ let
 - Let $\pi^{\kappa} \in \Delta(K)$ be its marginal on K
 - Let $\pi^{L|K} \in \Delta(L)^K$ be the matrix of conditionals on L given $k \in K$
 - Let $\pi^{L} \in \Delta(L)$ be its marginal on L
 - Let $\pi^{K|L} \in \Delta(K)^L$ be the matrix of conditionals on K given $\ell \in L$
- For any $p \in \Delta(K)$ let - $\Delta_p(\Delta(K))$ be the set of probabilities on $\Delta(K)$ with expectation p
- The set of splittings at π are $A(\pi) := \Delta_p(\Delta(K))$, with $p = \pi^K$ and $B(\pi) := \Delta_q(\Delta(L))$, with $q = \pi^L$

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

The splittings

• For any $\pi \in \Delta({\sf K} imes {\sf L})$ let

- Let $\pi^{\kappa} \in \Delta(K)$ be its marginal on K
- Let $\pi^{L|K} \in \Delta(L)^K$ be the matrix of conditionals on L given $k \in K$
- Let $\pi^L \in \Delta(L)$ be its marginal on L
- Let $\pi^{K|L} \in \Delta(K)^L$ be the matrix of conditionals on K given $\ell \in L$
- For any p ∈ Δ(K) let

 Δ_p(Δ(K)) be the set of probabilities on Δ(K) with expectation p
- The set of splittings at π are $A(\pi) := \Delta_p(\Delta(K))$, with $p = \pi^K$ and $B(\pi) := \Delta_q(\Delta(L))$, with $q = \pi^L$
- $\Phi(\pi, a, b)$ is the unique probability distribution on S induced by π , a and b, which is a splitting of $\Delta_{\pi}(S)$
- In the independent case, every player controls a separate martingale and Φ(π, a, b) = a ⊗ b

Notation

For any
$$f: \Delta(K imes L) o \mathbb{R}$$
, $Q \in \Delta(L)^K$ and $P \in \Delta(K)^L$ we set

$$- f_{\mathcal{K}}(\,\cdot\,,Q): \Delta(\mathcal{K}) \to \mathbb{R}, \quad p \mapsto f(p \otimes Q)$$

$$- f_L(\cdot, P) : \Delta(L) \to \mathbb{R}, \quad q \mapsto f(q \otimes P)$$

f is K-concave if f_K is concave on $\Delta(K)$ f is L-convex if f_L is convex on $\Delta(L)$

3

イロト イポト イヨト イヨト

Notation

For any
$$f:\Delta(K imes L) o\mathbb{R}$$
, $Q\in\Delta(L)^K$ and $P\in\Delta(K)^L$ we set

$$- f_{\mathcal{K}}(\cdot, Q) : \Delta(\mathcal{K}) \to \mathbb{R}, \quad p \mapsto f(p \otimes Q)$$

$$- f_L(\cdot, P) : \Delta(L) \to \mathbb{R}, \quad q \mapsto f(q \otimes P)$$

f is K-concave if f_K is concave on $\Delta(K)$ f is L-convex if f_L is convex on $\Delta(L)$

Mertens-Zamir system of equations:

$$f_{\mathcal{K}}(p,Q) = \operatorname{Cav}_{\Delta(\mathcal{K})} \min\{u_{\mathcal{K}}, f_{\mathcal{K}}\}(p,Q), \quad \forall p,Q$$
$$f_{\mathcal{L}}(q,P) = \operatorname{Vex}_{\Delta(\mathcal{L})} \max\{u_{\mathcal{L}}, f_{\mathcal{L}}\}(q,P), \quad \forall q,P$$

The unique solution is denoted V = MZ(u)

M. Oliu-Barton (Paris-Dauphine)

3

・ 得 ト ・ ヨ ト ・ ヨ ト

Main results

Theorem 1. The SG has a value $W_{\theta}(\pi)$. Moreover

- $-\pi\mapsto W_{ heta}(\pi)$ is K-concave, L-convex and Lipschitz
- $W_{\theta}(\pi) = \max_{\mathbf{a} \in \mathcal{A}(\pi)} \min_{\mathbf{b} \in \mathcal{B}(\pi)} \mathbb{E}[\theta_1 u(\pi') + W_{\theta^+}(\pi')]$

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

Main results

Theorem 1. The SG has a value $W_{\theta}(\pi)$. Moreover

$$- \ \pi \mapsto W_ heta(\pi)$$
 is K-concave, L-convex and Lipschitz

$$- W_{\theta}(\pi) = \max_{a \in A(\pi)} \min_{b \in B(\pi)} \mathbb{E}[\theta_1 u(\pi') + W_{\theta^+}(\pi')]$$

Elements of the proof (1) $(\pi, a, b) \mapsto \Phi(\pi, a, b)$ is continuous and bi-linear (2) Define the dependent splitting operator

$$f \mapsto \varphi(f)(\pi) = \max_{a \in A(\pi)} \min_{b \in B(\pi)} \mathbb{E}_{\Phi(\pi, a, b)}[f(\pi')]$$

(3) Establish a recurrence formula for W_{θ}^{-} and W_{θ}^{+}

3

Define the following 4 properties for real functions on $\Delta(K \times L)$

(P1) f is L-convex

- (P2) $f_{\mathcal{K}}(p, Q) \leq \operatorname{Cav}_{\Delta(\mathcal{K})} \min\{u_{\mathcal{K}}, f_{\mathcal{K}}\}(p, Q)$ for all p, Q
- (Q1) f is K-concave

(Q2) $f_L(q, P) \leq \operatorname{Vex}_{\Delta(L)} \max\{u_L, f_L\}(q, P)$ for all q, P

3

ヘロト 人間ト ヘヨト ヘヨト

Define the following 4 properties for real functions on $\Delta(K \times L)$

(P1) f is L-convex
(P2)
$$f_K(p, Q) \leq \operatorname{Cav}_{\Delta(K)} \min\{u_K, f_K\}(p, Q)$$
 for all p, Q
(Q1) f is K-concave
(Q2) $f_L(q, P) \leq \operatorname{Vex}_{\Delta(L)} \max\{u_L, f_L\}(q, P)$ for all q, P

Theorem 2. Let $f, g : \Delta(K \times L) \to \mathbb{R}$ be such that f satisfies (P1)-(P2) and g satisfies (Q1)-(Q2). Then

$$f \leq W_{\infty}^{-} \leq W_{\infty}^{+} \leq g$$

Elements of the proof

ヘロト 人間ト ヘヨト ヘヨト

Define the following 4 properties for real functions on $\Delta(K \times L)$

(P1) f is L-convex
(P2)
$$f_{\mathcal{K}}(p, Q) \leq \operatorname{Cav}_{\Delta(\mathcal{K})} \min\{u_{\mathcal{K}}, f_{\mathcal{K}}\}(p, Q)$$
 for all p, Q
(Q1) f is K-concave
(Q2) $f_{\mathcal{L}}(q, P) \leq \operatorname{Vex}_{\Delta(\mathcal{L}} \max\{u_{\mathcal{L}}, f_{\mathcal{L}}\}(q, P)$ for all q, P

Theorem 2. Let $f, g : \Delta(K \times L) \to \mathbb{R}$ be such that f satisfies (P1)-(P2) and g satisfies (Q1)-(Q2). Then

$$f \leq W_\infty^- \leq W_\infty^+ \leq g$$

Elements of the proof

(1) Let f satisfy (P1)-(P2). Define a strategy $\sigma(\varepsilon, f)$, $\pi_m \mapsto a_m$ s.t.

$$\mathbb{E}_{a_m}\left[\min\{u_K, f_K\}(p, Q_m)\right] \ge f(\pi_m) - \varepsilon/2^m$$

(2) Define the auxiliary steps $\pi_{m+1/2}$. Work with the martingale $(\pi_{m/2})_{m\geq 1}$ (3) Prove that the strategy $\sigma(\varepsilon, f)$ guarantees $f(\pi) - \varepsilon$

3

イロト イポト イヨト イヨト

Corollary. There is at most one solution to the MZ-system

3

Corollary. There is at most one solution to the MZ-system

Theorem (MZ 71). The MZ system has a solution v. In particular, $v_K(p, Q) = \operatorname{Cav}_{\Delta(K)} \min\{u_K, v_K\}(p, Q)$ for all p, Q.

(日) (國) (王) (王) (王)

Corollary. There is at most one solution to the MZ-system

Theorem (MZ 71). The MZ system has a solution v. In particular, $v_K(p, Q) = \operatorname{Cav}_{\Delta(K)} \min\{u_K, v_K\}(p, Q)$ for all p, Q.

Theorem 3

- The splitting game has a uniform value $W_{\infty} = v := MZ(u)$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 ● ○○○

Corollary. There is at most one solution to the MZ-system

Theorem (MZ 71). The MZ system has a solution v. In particular, $v_{\mathcal{K}}(p, Q) = \operatorname{Cav}_{\Delta(\mathcal{K})} \min\{u_{\mathcal{K}}, v_{\mathcal{K}}\}(p, Q)$ for all p, Q.

Theorem 3

- The splitting game has a uniform value $W_\infty = v := MZ(u)$
- There exists optimal strategies such that $(\pi_m)_{m\geq 2}$ is constant
- The strategy (for player) 1 is $\sigma(0, v)$ with the additional restriction: (i) If $u(\pi) \ge v(\pi)$, play δ_p (ii) If $u(\pi) < v(\pi)$, play $a = \sum_{r \in R} \lambda^r \delta_{p^r}$ where $\pi^r = p^r \otimes Q$ $u(\pi^r) = v(\pi^r)$ for all $r \in R$ and $\sum_{r \in R} \lambda^r \min\{u, v\}v(\pi_r) = v(\pi)$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 ● ○○○

Corollary. There is at most one solution to the MZ-system

Theorem (MZ 71). The MZ system has a solution v. In particular, $v_{\mathcal{K}}(p,Q) = \operatorname{Cav}_{\Delta(\mathcal{K})} \min\{u_{\mathcal{K}}, v_{\mathcal{K}}\}(p,Q) \text{ for all } p, Q.$

Theorem 3

- The splitting game has a uniform value $W_{\infty} = v := MZ(u)$
- There exists optimal strategies such that $(\pi_m)_{m\geq 2}$ is constant
- The strategy (for player) 1 is $\sigma(0, v)$ with the additional restriction: (i) If $u(\pi) > v(\pi)$, play δ_n (ii) If $u(\pi) < v(\pi)$, play $a = \sum_{r \in R} \lambda^r \delta_{p^r}$ where $\pi^r = p^r \otimes Q$ $u(\pi^r) = v(\pi^r)$ for all $r \in R$ and $\sum_{r \in R} \lambda^r \min\{u, v\} v(\pi_r) = v(\pi)$

Elements of the proof

(1) MZ 71: The MZ system has a solution v which satisfies (P1)-(P2)

- (2) The strategy $\sigma(0, v)$ guarantees v so that $W_{\infty} \geq v$
- (3) Similarly, one obtains $W_{\infty} < v$
- (4) (i) and (ii) ensure that $(\pi_m)_{m\geq 2}$ is constant

M. Oliu-Barton (Paris-Dauphine)

Corollary. $W_{\theta} \rightarrow v = MZ(u)$, as $\sup_{m} \theta_{m} \rightarrow 0$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Corollary. $W_{\theta} \rightarrow v = MZ(u)$, as $\sup_{m} \theta_{m} \rightarrow 0$

Proof: The existence of the uniform value implies this statement

◆□▶ ◆帰▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Corollary. $W_{\theta} \rightarrow v = MZ(u)$, as $\sup_{m} \theta_{m} \rightarrow 0$

Proof: The existence of the uniform value implies this statement

Corollary. $V_{\theta} \rightarrow v = MZ(u)$, as $\sup_{m} \theta_{m} \rightarrow 0$, where V_{θ} is the value of the repeated games with incomplete information

Proof: $|W_{ heta} - V_{ heta}| \le C(\sup_m \theta_m)^{1/2}$ for all evaluations heta

◆□▶ ◆帰▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Remarks

- In repeated games with incomplete information the uniform value does not exist : each players prefers the other to reveal first
- Although asymptotically equivalent, a crucial (and surprising) difference is that the Splitting Game has a uniform value. Observing the other player's use of information makes the game strategically very stable: under optimal play => at most one splitting

Remarks

- In repeated games with incomplete information the uniform value does not exist : each players prefers the other to reveal first
- Although asymptotically equivalent, a crucial (and surprising) difference is that the Splitting Game has a uniform value. Observing the other player's use of information makes the game strategically very stable: under optimal play => at most one splitting
- The optimal uniform strategy is very simple and "trivializes the game"

Remarks

- In repeated games with incomplete information the uniform value does not exist : each players prefers the other to reveal first
- Although asymptotically equivalent, a crucial (and surprising) difference is that the Splitting Game has a uniform value. Observing the other player's use of information makes the game strategically very stable: under optimal play => at most one splitting
- The optimal uniform strategy is very simple and "trivializes the game"
- Recently, economists are looking at *commitment strategies* for games with incomplete information, i.e. assume the players can commit to playing some strategy $(\sigma^k)_{k \in K}$. We are then in the splitting game and uniform equilibrium exists

3

イロト イポト イヨト イヨト

• Characterize the optimal martingales in standard repeated games with incomplete information

э

・ 戸 ト ・ ヨ ト ・ ヨ ト

- Characterize the optimal martingales in standard repeated games with incomplete information
- What if the players do not observe their types perfectly (hence, not all the splittings are possible). **Constrained splitting game**

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Characterize the optimal martingales in standard repeated games with incomplete information
- What if the players do not observe their types perfectly (hence, not all the splittings are possible). **Constrained splitting game**
- The types are not fixed and evolve according to some exogenous process (Renault 11, Gensbittel and Renault 14)

・ 戸 ト ・ ヨ ト ・ ヨ ト

- Characterize the optimal martingales in standard repeated games with incomplete information
- What if the players do not observe their types perfectly (hence, not all the splittings are possible). **Constrained splitting game**
- The types are not fixed and evolve according to some exogenous process (Renault 11, Gensbittel and Renault 14)
- What if the underlying repeated games does not have perfect monitoring ?

For instance, in the dark, the players cannot reveal information

・ 伺 ト ・ ヨ ト ・ ヨ ト

- Characterize the optimal martingales in standard repeated games with incomplete information
- What if the players do not observe their types perfectly (hence, not all the splittings are possible). **Constrained splitting game**
- The types are not fixed and evolve according to some exogenous process (Renault 11, Gensbittel and Renault 14)
- What if the underlying repeated games does not have perfect monitoring ?
 - For instance, in the dark, the players cannot reveal information
- The splitting game to study non-zero-sum repeated games with incomplete information

イロト イポト イヨト イヨト

Moltes gràcies !

Merci pour votre attention

3

・ロト ・四ト ・ヨト ・ヨト