

Challenges

- Airbus Global Market Forecast based on the International Civil Aviation Organization numbers, 2015.
- J. E. Penner, Aviation and the global atmosphere: a special report of IPC. Cambridge University Press, 1999.

Following a promising commercialized model...

We have electric cars, What about looking for an Electric Aircraft?

Aircraft and Electrical Power

Try another commercialized efficient model...

May the Hybrid Aircraft be a solution?

By using Electric and Thermic propulsion + **Batteries**

And manage the **Energy!**

Need of merging operations, engine and airframe

Carefulness with the uncertainty

Accounting for **uncertainty** about **technologies**, when could fly the first competitive hybrid aircraft?

- P. Simon, Storage technologies including trends for batteries and super-capacitors for power quality and energy management improvement, Airbus, 2012.
- J. Dahn, Electrically rechargeable metal-air batteries compared to advanced lithium-ion batteries, 2009

Outline

Aircraft design models

Aircraft design optimization

Conclusion & Perspectives

Classic Aircraft Design process

Hybrid Aircraft

The proposed aircraft design process

Outline

Aircraft design models

Aircraft design optimization

Conclusion & Perspectives

Aircraft design deterministic optimization

Criteria

Fuel, Cost, MTOW or Climate Impact (APGWP).

Performances

Take-Off Field Length (1 or 2)

Landing Speed

Climb Vertical Speed

Cruise Vertical Speed

- No proof of convexity
- Differentiable almost everywhere
- With gradients (automatic differentiation)
 - Few variables & constraints

Airframe, engine and mission parameters.

Sea Level Static Thrust

Wing Area

Wing Aspect Ratio

Engine By-Pass ratio

Cruise Altitude

Cruise Mach

Mission speeds (x5)

Considering two types of uncertainties

From prediction

From modeling process

Propulsion

Aerodynamics

Mass

How to optimize under uncertainty

The Chance constrained optimization approach

$$\min_{\substack{X \in \Omega \\ \Omega \subset \mathbb{R}^n}} E[f(X,\xi)],
\text{s.t.} \quad \text{Prob}(g_i(X,\xi) \le 0) > p_i, \ p_i \in [0,1], \ i = 1, \dots, l.$$

Robust optimization approach

$$\begin{vmatrix} \min_{\substack{X \in \Omega \\ \Omega \subset \mathbb{R}^n}} & \sup_{\xi \in \mathcal{U}} [f(X, \xi)], \\ \text{s.t.} & g_i(X, \xi) \leq 0, \ \forall \xi \in \mathcal{U}, \ i = 1, \dots, l. \end{aligned}$$

Requires Uncertainty Quantification and Propagation

Uncertainty Quantification & Propagation

To get information on ξ .

- By Probability distribution of uncertainty
- By Intervals of uncertainty

$$\xi \in [\xi_{min}, \xi_{max}]$$

To get information on $f(X,\xi)$ and $g_i(X,\xi)$

Monte Carlo methods

Stochastic Expansion methods

Taylor Based methods

Quadrature methods

carefulness

Required output accuracy

Available input accuracy

trade

Computational Required output cost

accuracy

The application to the hybrid aircraft design

 $X \in \Omega$

Hybrid Aircraft

Chance Constrained

Optimization

Using a sequential chance constrained optimization method (SORA)

S.t.
$$\begin{cases} \text{Prob}(g_i(X, \xi) \le 0) \ge 0.95, & i = 1, ..., l, \\ \text{Prob}(f(X, \xi) \le f_{\text{conv}}^{\min}) \ge 0.95. \end{cases}$$

With the suitable uncertainty propagation method

Hybrid aircraft design Results

Optimized versus	Fuel (Cost Mission)		Cost (COC)		Mass (MTOW)		Climatic Impact (APGWP)	
	Conv.	Hyb.	Conv.	Hyb.	Conv.	Hyb.	Conv.	Hyb.
Year		2026		2025		2030		2020
SLSThrust (daN)	11620	11160	12260	11760	12130	11580	10950	11120
WingArea (m²)	152	152	150	154	142	148	175	175
WingAR	17	17	15	16	14	14	10	8
BPR	8	8	8	8	8	8	12,9	12,2
ZpRef (ft)	35000	35000	35000	35000	35000	35000	31400	30000
CruiseMach	0,63	0,61	0,744	0,747	0,662	0,6	0,66	0,61
eFanPower (MW)	X	1,1	X	1	X	1,2	X	1,7
ElectricRatio	X	0,01	X	0,01	X	0,016	X	0,012
Cost Mis. Fuel (kg)	1650	1650	1780	1780	1730	1730	2100	2300
MTOW (kg)	79400	78900	80650	81200	78650	78650	83900	86000
COC (\$/trip)	4400	4470	4200	4200	4300	4470	4600	4920
APGWP (W/m²/km/year)	3,1e-5	3,06e-5	3,25e-5	3,2e-5	3,16e-5	3,1e-5	2,77e-5	2,77e-5
Active Constraints	TOFL	TOFL	TOFL LdSpeed	TOFL LdSpeed	TOFL	TOFL	TOFL ClbVz	TOFL

First steps towards a robust optimization approach

Robust optimization approach

$$\min_{\substack{X \in \Omega \\ \Omega \subset \mathbb{R}^n}} \sup_{\xi \in \mathcal{U}} [f(X, \xi)],$$
s.t. $g_i(X, \xi) \leq 0$, $\forall \xi \in \mathcal{U}$, $i = 1, \dots, l$.

- 100% reliable optimum,
- Affine constraint set, and linear objective,
- Conservative approach,
- Application to the Aircraft design in 2D & 3D,
- Uncertainty from mass, aerodynamics and propulsion.

A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust optimization. Princeton, University Press, 2009.

Conclusion and perspectives

- A new hollistic approach of the aircraft preliminary design, merging airframe, engine, regulations and trajectory.
- Application of this approach to the uncertain optimization of a hybrid aircraft configuration to propose a solution to the aviation climatic impact growth, taking into account uncertainty around the hybrid technology evolution
- → Improve hybrid aircraft synergies, apply to another innovative configuration.
- Writing guidelines for uncertainty propagation methods, and adapt of the chance constrained optimization method to accurately use uncertain input informations.
- → Automatic selection of the uncertainty propagation method, joint probability case.
- First steps towards a robust optimization of a conventional aircraft design.
- → Generalize the approach, application to component design.

Thanks

"Anytime you have a 50-50 chance of getting something right, there's a 90% probability you'll get it wrong."

Andy Rooney

