Population balance-based optimal control of a crystallization process

Amira Rachah - Dominikus Noll

Mathématiques pour l'Industrie et la Physique Institut de Mathématiques de Toulouse

Journées SMAI-MODE 2016

March 25, 2016

Amira Rachah

March 25, 2016 1 / 32

Context

Mathematical modelling and process dynamics

3 Optimal control of the crystalization of lpha-lactose monohydrate

- Problem
- Reduced model for control
- Results

Product meets the set of specifications of the industry

pharmaceutical

Amira Rachah

Product meets the set of specifications of the industry

pharmaceutical

chemical

Amira Rachah

Product meets the set of specifications of the industry

pharmaceutical

chemical

agri-food March 25, 2016

Amira Rachah

3 / 32

- Complex phenomena during the crystallization
- Complex operating mode
- Difficulty in controlling the process

Aim of process : To meet product specifications

- Desired particle size distribution
- Fabrication of high quality materials
- Maximum yield

Control of crystallization of α -lactose monohydrate most commonly used form of lactose (milk sugar) in seeded semi-batch mode \Rightarrow Product meets the set of specifications of the industry LACTALIS

Control of crystallization of α -lactose monohydrate most commonly used form of lactose (milk sugar) in seeded semi-batch mode \Rightarrow Product meets the set of specifications of the industry LACTALIS

Proprieties of α -lactose monohydrate

 Used as carrier and stabilizer of aromas and pharmaceutical products due to its bland flavor

Control of crystallization of α -lactose monohydrate most commonly used form of lactose (milk sugar) in seeded semi-batch mode \Rightarrow Product meets the set of specifications of the industry LACTALIS

Proprieties of α -lactose monohydrate

 Used as carrier and stabilizer of aromas and pharmaceutical products due to its bland flavor

 Added to tablets and capsules as a filler, due to good physical properties and low price

Control of crystallization of α -lactose monohydrate most commonly used form of lactose (milk sugar) in seeded semi-batch mode \Rightarrow Product meets the set of specifications of the industry LACTALIS

Proprieties of α -lactose monohydrate

 Used as carrier and stabilizer of aromas and pharmaceutical products due to its bland flavor

- Added to tablets and capsules as a filler, due to good physical properties and low price
- Available as powder in different grades, depending on particle size distribution, density and flowability

Outline

- Mathematical modelling and process dynamics
- **②** Optimal control of the crystalization of α -lactose monohydrate
- Onclusions

2 Mathematical modelling and process dynamics

) Optimal control of the crystalization of lpha-lactose monohydrate

- Problem
- Reduced model for control
- Results

Crystallization of α -lactose monohydrate in semi-batch mode

Crystallization of α -lactose monohydrate in semi-batch mode

Mathematical model

- Mass balances : $m_{
 m H_2O}(t)$, $m_{lpha}(t)$, $m_{eta}(t)$,
- Energy balances : T(t), $T_{\text{jacket}}(t)$,
- Population balance : n(L, t).

Mass balance of solvent (water)

- \bullet Water molecule integrated in $\alpha\mbox{-lactose}$ crystal : Loss due to crystallization
- Feed of solution during semi-batch phase.

$$rac{dm_{
m H_2O}(t)}{dt} = - \underbrace{\left(1 - rac{1}{R}
ight)}_{rac{dm_{
m cry}(t)}{dt}} + q_{
m H_2O}(t)
onumber \ rac{dm_{
m H_2O\sub{cry}}}{rac{dm_{
m H_2O\sub{cry}}}{dt}}$$

$$\begin{aligned} \frac{dm_{\rm cry}(t)}{dt} &= 3k_{\nu}\rho_{\rm cry}G(C_{\alpha}(t),C_{\beta}(t),T(t))V(t)\int_{0}^{\infty}n(L,t)L^{2}dL\\ C_{\alpha} &= \frac{m_{\alpha}}{m_{\rm H_{2}O}}, \quad C_{\beta} = \frac{m_{\beta}}{m_{\rm H_{2}O}} \end{aligned}$$

Mass balance of α -lactose in liquid phase

- Loss due to crystallization
- Loss due to mutarotation $\alpha \rightarrow \beta$
- Gain due to mutarotation $\beta \rightarrow \alpha$
- Gain through feed of solution in semi-batch phase $\dot{m}^+_lpha(t) = q_{
 m H_2O}(t) C_{lpha,0}$

$$egin{aligned} rac{dm_lpha(t)}{dt} = &-rac{1}{R}rac{dm_{ ext{cry}}(t)}{dt} + \left[-k_1(T(t))m_lpha(t) + k_2(T(t))m_eta(t)
ight] \ &+ q_{ ext{H}_2 ext{O}}(t)\mathcal{C}_{lpha,0} \end{aligned}$$

$$m_{\alpha} = C_{\alpha} m_{\mathrm{H_{2}O}}, \quad m_{\beta} = C_{\beta} m_{\mathrm{H_{2}O}}$$

Mass balance of β -lactose

- \bullet Loss due to mutarotation $\beta \to \alpha$
- $\bullet\,$ Gain due to mutarotation $\alpha \to \beta$
- Gain due to feed of solution in semi-batch phase $\dot{m}^+_eta(t)=q_{
 m H_2O}(t)\mathcal{C}_{eta,0}$

$$rac{dm_eta(t)}{dt} = k_1(\mathcal{T}(t))m_lpha(t) - k_2(\mathcal{T}(t))m_eta(t) + q_{
m H_2O}(t)\mathcal{C}_{eta,O}$$

Mass balance of β -lactose

- \bullet Loss due to mutarotation $\beta \to \alpha$
- Gain due to mutarotation $\alpha \to \beta$
- Gain due to feed of solution in semi-batch phase $\dot{m}^+_eta(t)=q_{
 m H_2O}(t)\mathcal{C}_{eta,0}$

$$rac{dm_eta(t)}{dt} = k_1(T(t))m_lpha(t) - k_2(T(t))m_eta(t) + q_{
m H_2O}(t)\mathcal{C}_{eta,0}$$

Total volume of slurry :

$$V(t) = rac{m_lpha(t)}{
ho_{\mathrm{lac},lpha}} + rac{m_eta(t)}{
ho_{\mathrm{lac},eta}} + rac{m_{\mathrm{cry}}(t)}{
ho_{\mathrm{cry}}} + rac{m_{\mathrm{H_2O}}(t)}{
ho_{\mathrm{H_2O}}}$$

Mass balance of β -lactose

- \bullet Loss due to mutarotation $\beta \to \alpha$
- Gain due to mutarotation $\alpha \to \beta$
- Gain due to feed of solution in semi-batch phase $\dot{m}^+_eta(t)=q_{
 m H_2O}(t)\mathcal{C}_{eta,0}$

$$rac{dm_eta(t)}{dt} = k_1(T(t))m_lpha(t) - k_2(T(t))m_eta(t) + q_{
m H_2O}(t)\mathcal{C}_{eta,O}$$

Total volume of slurry :

$$V(t) = rac{m_lpha(t)}{
ho_{ ext{lac},lpha}} + rac{m_eta(t)}{
ho_{ ext{lac},eta}} + rac{m_{ ext{cry}}(t)}{
ho_{ ext{cry}}} + rac{m_{ ext{H}_2 ext{O}}(t)}{
ho_{ ext{H}_2 ext{O}}}$$

Crystal mass :
$$m_{\rm cry}(t) = k_v \rho_{\rm cry} V(t) \int_0^\infty n(L,t) L^3 dL$$

Amira Rachah

Thermodynamic balance equation

- Heating and cooling : $T_{\rm sp}(t) \to T_{\rm jacket}(t) \to T(t)$ (identified from experimental data)
- Heat created by chemical reaction
- Heating or cooling due to temperature difference with feed

$$\frac{dT(t)}{dt} = P_{1} \left\{ -P_{2}(T(t) - T_{ref}) + UA(t) (T_{jacket}(t) - T(t)) + q_{H_{2}O}(t) (Cp_{H_{2}O} + Cp_{\alpha}c_{\alpha,0} + Cp_{\beta}c_{\beta,0}) (T_{H_{2}O} - T_{ref}) - \Delta H(T_{ref}) \frac{dm_{cry}(t)}{dt} \right\}$$

$$P_{1} = \frac{1}{(m_{H_{2}O}(t)Cp_{H_{2}O} + m_{\alpha}(t)Cp_{\alpha} + m_{\beta}(t)Cp_{\beta} + m_{cry}(t)Cp_{cry})}$$

$$P_{2} = \frac{dm_{H_{2}O}(t)}{dt}Cp_{H_{2}O} + \frac{dm_{\alpha}(t)}{dt}Cp_{\alpha} + \frac{dm_{\beta}(t)}{dt}Cp_{\beta} + \frac{dm_{cry}(t)}{dt}Cp_{cry}}{March 25, 2016} 12 / 32$$

Population balance equation

$$\underbrace{\frac{\partial \left(V(t)n(L,t)\right)}{\partial t}}_{accumulation} + \underbrace{G\left(C_{\alpha}(t), C_{\beta}(t), T(t)\right) \frac{\partial \left(V(t)n(L,t)\right)}{\partial L}}_{growth}$$

$$= \underbrace{-a(L) V(t)n(L,t) + \int_{L}^{\infty} a(L')b(L' \to L) V(t)n(L',t) dL'}_{breakage}$$

$$n(L = 0, t) = \frac{B\left(C_{\alpha}(t), C_{\beta}(t), T(t)\right)}{G\left(C_{\alpha}(t), C_{\beta}(t), T(t)\right)} \quad \text{Boundary condition}$$

$$n(L, t = 0) = n_{0}(L) \quad \text{Initial condition (seed)}$$

$$n(L,t) = \text{crystal size distribution}$$
 $V(t) = \text{volume of slurry}$ $T(t) = \text{crystallizer temperature}$ $G = \text{growth rate}$ $a, b = \text{rates of breakage}$ $B = \text{birth rate}$ $c_{\alpha/\beta} = \text{concentration of } \alpha/\beta\text{-lactose in solution}$ $n_0(L) = \text{seed}$

$$\mu_i(t) = \int_0^\infty n(L,t) L^i dL$$

For
$$i = 0$$
, $\mu_0 \sim$ number of crystals

$$\mu_i(t) = \int_0^\infty n(L,t) L^i dL$$

 For $i = 0$,	μ_0	\sim	number of crystals	
For $i = 1$,	μ_1	\sim	length of crystals	

$$\mu_i(t) = \int_0^\infty n(L,t) L^i dL$$

 For $i = 0$,	μ_0	\sim	number of crystals	
For $i = 1$,	μ_1	~	length of crystals	
For $i = 2$,	μ_2	\sim	surface of crystals	

$$\mu_i(t) = \int_0^\infty n(L,t) L^i dL$$

 For $i = 0$,	μ_0	\sim	number of crystals	
For $i = 1$,	μ_1	\sim	length of crystals	
For $i = 2$,	μ_2	\sim	surface of crystals	
 For $i = 3$,	μ_3	~	volume of crystals	

Mathematical modelling and process dynamics

Optimal control of the crystalization of α -lactose monohydrate 3

- Problem
- Reduced model for control
- Results

Mathematical model

• Mass balances : $m_{
m H_2O}(t)$, $m_{lpha}(t)$, $m_{eta}(t)$

 $\hookrightarrow 3 \; \mathsf{ODE} + \mathsf{integral} = \mathsf{Integro-differential} \; \mathsf{equations}$

Problem

Mathematical model

• Mass balances : $m_{
m H_2O}(t)$, $m_{lpha}(t)$, $m_{eta}(t)$

 $\hookrightarrow 3 \text{ ODE} + \text{integral} = \text{Integro-differential equations}$

- Energy balances : T(t), $T_{\text{jacket}}(t)$
- $\hookrightarrow 2 \text{ ODE} + \text{integral} = \text{Integro-differential equations}$

Problem

Mathematical model

• Mass balances : $m_{
m H_2O}(t)$, $m_lpha(t)$, $m_eta(t)$

 $\hookrightarrow 3 \text{ ODE} + \text{integral} = \text{Integro-differential equations}$

• Energy balances : T(t), $T_{\text{jacket}}(t)$

 $\hookrightarrow 2 \text{ ODE} + \text{integral} = \text{Integro-differential equations}$

• Population balance : n(L, t) of particles of size L

 $\hookrightarrow 1 \; \mathsf{PDE}$

Mathematical model

• Mass balances : $m_{
m H_2O}(t)$, $m_lpha(t)$, $m_eta(t)$

 $\hookrightarrow 3 \text{ ODE} + \text{integral} = \text{Integro-differential equations}$

• Energy balances : T(t), $T_{\text{jacket}}(t)$

 $\hookrightarrow 2 \text{ ODE} + \text{integral} = \text{Integro-differential equations}$

• Population balance : n(L, t) of particles of size L

 $\hookrightarrow 1 \; \mathsf{PDE}$

Problem

Set of Integro-differential equations coupled + PDE + nonlinearity

Optimal control problem

By acting on the feed rate of solution $q_{\rm H_2O}(t)$, on the set-point temperature $T_{\rm sp}(t)$ and on the crystal seed $n_0(L)$ we wish to

1. Specific criterion

steer the process in such a way that the growth of particles within the size range $130\mu m \le L \le 330\mu m$ is maximized.

2. Non-specific criterion

minimize the weighted mean size diameter $d_{43} =$

$$=\frac{\int_0^\infty n(L,t_f)L^4 dL}{\int_0^\infty n(L,t_f)L^3 dL}$$

$\begin{array}{l} \mbox{Controls}:\\ u_1(t)={\cal T}_{\rm sp}(t)=\mbox{set-point temperature}\\ u_2(t)=q_{\rm H_2O}(t)=\mbox{feed rate of solution} \end{array}$

Controls : $u_1(t) = T_{sp}(t) = \text{set-point temperature}$ $u_2(t) = q_{H_2O}(t) = \text{feed rate of solution}$

Parameters :

 $n_0(L) =$ crystals size distribution of seed of given mass

Controls : $u_1(t) = T_{sp}(t) = \text{set-point temperature}$ $u_2(t) = q_{H_2O}(t) = \text{feed rate of solution}$

Parameters :

 $n_0(L) =$ crystals size distribution of seed of given mass

Cost function :

$$k_{\nu}\rho_{\rm cry}V(t_f)\int_{L_1}^{L_2}L^3n(L,t_f)dL = \text{ crystal mass in interval } [L_1,L_2]$$

Use moment approach

$$\mu_i(t) = \int_0^\infty L^i n(L,t) dL, \quad i = 0, \dots, N$$

Use moment approach

$$\mu_i(t) = \int_0^\infty L^i n(L,t) dL, \quad i = 0, \dots, N$$

Population balance splits into

$$egin{aligned} rac{d\mu_i(t)}{dt} + rac{V'(t)}{V(t)}\mu_i(t) - iG\left(c_lpha(t),c_eta(t),T(t)
ight)\mu_{i-1}(t)
ight) = 0, \ i = 1,\ldots,N \ rac{d\mu_0(t)}{dt} = rac{V'(t)}{V(t)}\mu_0(t) - B\left(c_lpha(t),c_eta(t),T(t)
ight) = 0 \end{aligned}$$

Parameters :

$$p_i = \mu_i(0), i = 0, \dots, N$$
 moments of unknown seed

Controls : $u_1(t) = T_{sp}(t) = \text{set-point temperature}$ $u_2(t) = q_{H_2O}(t) = \text{feed rate of solution}$

Controls : $u_1(t) = T_{sp}(t) = \text{set-point temperature}$ $u_2(t) = q_{H_2O}(t) = \text{feed rate of solution}$

Parameters :

Unknown moments of the unknown seed of known mass

Controls : $u_1(t) = T_{sp}(t) = \text{set-point temperature}$ $u_2(t) = q_{H_2O}(t) = \text{feed rate of solution}$

Parameters :

Unknown moments of the unknown seed of known mass

Cost function : ???

Procedure

- Choose target CSD $n_{\text{target}}(L)$, which has its bulk of crystal mass in the range $[L_1, L_2]$.
- Normalize to unit mass and compute moments of target $\mu_{i,\text{target}}$.

Obtain weighted least squares objective

$$\min \rightarrow \sum_{i=0}^{N} w_i \left(\mu_i(t_f) - \mu_{i, \text{target}} \right)^2$$

• Pull moments of unknown $n(L, t_f)$ to moments of target such that third moment matches

minimize $\sum_{i=1}^{n} w_i \left(\mu_i(t_f) - \mu_{i,\text{target}} \right)^2$ i-1subject to population dynamics (moments) mass balances energy balance initial conditions $V_0 \leq V(t) \leq V_{\max}$ $0 \leq T(t) \leq 70^{\circ} \mathrm{C}$ $0 \leq p \leq P_{\max}$ supersaturation

Model : PDE+ODEs Cost function : $k_v \rho_{cry} V(t_f) \int_{L_1}^{L_2} L^3 n(L, t_f) dL$ Controls : $T_{cnsg}(t)$, $q_{H_2O}(t)$ Parameter : n(L, t = 0)

Model : PDE+ODEs cost function : $k_{v}\rho_{\mathrm{cry}}V(t_{f})\int_{L_{1}}^{L_{2}}L^{3}n(L,t_{f})dL$ Controls : $T_{cnsg}(t)$, $q_{H_2O}(t)$ Parameters : n(L,0)Reduce model (Moment approach) Model : ODEs

 $\begin{array}{l} \text{Cost function}:\min \rightarrow \\ \sum_{i=0}^{N} (\mu_i(t_f) - \mu_{i,\text{target}})^2 \\ \text{Controls}: \ \mathcal{T}_{\text{cnsg}}(t), \ q_{\text{H}_2\text{O}}(t) \\ \text{Parameters}: \ \mu_i(0) \end{array}$

Model : PDE+ODEs Cost function : $k_v \rho_{\rm cry} V(t_f) \int_{L_1}^{L_2} L^3 n(L, t_f) dL$ Controls : $T_{cnsg}(t)$, $q_{H_2O}(t)$ Parameters : n(L,0)Reduce model (Moment approach) Model : ODEs Cost function : min \rightarrow Optimal control : Control $T_{cnsg}^{*}(t), q_{H_{2}O}^{*}(t)$ $\sum_{i=1}^{n} (\mu_i(t_f) - \mu_{i,\text{target}})^2$ \Rightarrow **Optimal parameters** : PSOPT, ACADO Controls : $T_{cnsg}(t)$, $q_{H_2O}(t)$ $\mu_i(0)^*$ Parameter : $\mu_i(0)$

Model : PDE+ODEs Cost function : $k_{v}\rho_{cry}V(t_{f})\int_{L_{1}}^{L_{2}}L^{3}n(L,t_{f})dL$ Controls : $T_{cnsg}(t)$, $q_{H_{2}O}(t)$	Simulate ⇐	Optimal controls : $T^*_{cnsg}(t), q^*_{H_2O}(t)$ Optimal parameters : $n(L, 0)^*$
Parameters : $n(L, 0)$ Reduce the model (Moment approach) \downarrow		MAXENT ↑ Reconstruct
$ \begin{array}{l} Model:ODEs\\ Cost function:min \rightarrow\\ \sum_{i=0}^{N} \left(\mu_i(t_f) - \mu_{i,\mathrm{target}}\right)^2\\ Controls: \mathcal{T}_{\mathrm{cnsg}}(t), \ q_{\mathrm{H_2O}}(t)\\ Parameters: \ \mu_i(0) \end{array} $	Control ⇒ PSOPT, ACADO	Optimal controls : $T^*_{cnsg}(t), q^*_{H_2O}(t)$ Optimal parameters : $\mu_i(0)^*$

Numerical resolution

- ACADO : software environment and algorithm collection for automatic control and dynamic optimization.
 - http://www.acadotoolkit.org
- PSOPT :
 - http://www.psopt.org/Home

Method of reconstruction of distribution : Maximum entropy

(P) maximize
$$S[p] = -\int_0^\infty p(x) \ln p(x) dx$$

subject to $\int_0^\infty p(x) x^i dx = \mu_i, i = 0, \dots, N$

Results

Optimal regulation of set-point temperature $u_1^*(t) = T_{sp}^*(t)$ (left) and optimal feed rate $u_2^*(t) = q_{H_2O}^*(t)$ (right).

Results

Optimal initial seed $n_0^*(L)$ (left) and optimal final CSD $n^*(L, t_f)$ (right)

Mathematical modelling and process dynamics

Optimal control of the crystalization of lpha-lactose monohydrate

- Problem
- Reduced model for control
- Results

- Use of the moment approach to obtain a reduced model for control
- Optimal control techniques based on mathematical modelling were used to enhance product quality in solvated crystallization

- Use of the moment approach to obtain a reduced model for control
- Optimal control techniques based on mathematical modelling were used to enhance product quality in solvated crystallization
- The crystal mass of α -lactose monohydrate produced in a specific size range may be substantially increased over standard approaches if optimization is used

THANK you for your attention

Ü