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Context

Problem

Complex phenomena during the crystallization

Complex operating mode

Difficulty in controlling the process

Aim of process : To meet product specifications

Desired particle size distribution

Fabrication of high quality materials

Maximum yield
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Control of crystallization of α-lactose monohydrate most commonly used
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Proprieties of α-lactose monohydrate

Used as carrier and stabilizer of aromas and
pharmaceutical products due to its bland flavor

Added to tablets and capsules as a filler, due to good physical
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Available as powder in different grades, depending on particle size
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Mathematical modelling and process dynamics

Crystallization of α-lactose monohydrate in semi-batch mode

Mathematical model

Mass balances : mH2O(t), mα(t), mβ(t),

Energy balances : T (t), Tjacket(t),

Population balance : n(L, t).
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Mathematical modelling and process dynamics

Mass balance of solvent (water)

Water molecule integrated in α-lactose crystal : Loss due to
crystallization

Feed of solution during semi-batch phase.

dmH2O(t)

dt
= −

(
1− 1

R

)
dmcry(t)

dt︸ ︷︷ ︸
dmH2O⊂cry

dt

+qH2O(t)

dmcry(t)

dt
= 3kvρcryG (Cα(t),Cβ(t),T (t))V (t)

∫ ∞
0

n(L, t)L2dL

Cα =
mα

mH2O
, Cβ =

mβ

mH2O
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Mathematical modelling and process dynamics

Mass balance of α-lactose in liquid phase

Loss due to crystallization

Loss due to mutarotation α→ β

Gain due to mutarotation β → α

Gain through feed of solution in semi-batch phase
ṁ+
α (t) = qH2O(t)Cα,0

dmα(t)

dt
=− 1

R

dmcry(t)

dt
+ [−k1(T (t))mα(t) + k2(T (t))mβ(t)]

+ qH2O(t)Cα,0

mα = CαmH2O, mβ = CβmH2O
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Mathematical modelling and process dynamics

Mass balance of β-lactose

Loss due to mutarotation β → α

Gain due to mutarotation α→ β

Gain due to feed of solution in semi-batch phase
ṁ+
β (t) = qH2O(t)Cβ,0

dmβ(t)

dt
= k1(T (t))mα(t)− k2(T (t))mβ(t) + qH2O(t)Cβ,0

Total volume of slurry :

V (t) =
mα(t)

ρlac,α
+

mβ(t)

ρlac,β
+

mcry(t)

ρcry
+

mH2O(t)

ρH2O

Crystal mass : mcry(t) = kvρcryV (t)

∫ ∞
0

n(L, t)L3dL
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ṁ+
β (t) = qH2O(t)Cβ,0

dmβ(t)

dt
= k1(T (t))mα(t)− k2(T (t))mβ(t) + qH2O(t)Cβ,0

Total volume of slurry :

V (t) =
mα(t)

ρlac,α
+

mβ(t)

ρlac,β
+

mcry(t)

ρcry
+

mH2O(t)

ρH2O

Crystal mass : mcry(t) = kvρcryV (t)

∫ ∞
0

n(L, t)L3dL

Amira Rachah March 25, 2016 11 / 32



Mathematical modelling and process dynamics

Thermodynamic balance equation

Heating and cooling : Tsp(t)→ Tjacket(t)→ T (t) (identified from
experimental data)

Heat created by chemical reaction

Heating or cooling due to temperature difference with feed

dT (t)

dt
= P1

{
− P2(T (t)− Tref ) + UA(t) (Tjacket(t)− T (t))

+ qH2O(t) (CpH2O + Cpαcα,0 + Cpβcβ,0) (TH2O − Tref)

−∆H(Tref )
dmcry(t)

dt

}

P1 =
1

(mH2O(t)CpH2O + mα(t)Cpα + mβ(t)Cpβ + mcry(t)Cpcry)

P2 =
dmH2O(t)

dt
CpH2O +

dmα(t)

dt
Cpα +

dmβ(t)

dt
Cpβ +

dmcry(t)

dt
Cpcry
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Mathematical modelling and process dynamics

Population balance equation

∂ (V (t)n(L, t))

∂t︸ ︷︷ ︸
accumulation

+G (Cα(t),Cβ(t),T (t))
∂ (V (t)n(L, t))

∂L︸ ︷︷ ︸
growth

= −a(L)V (t)n(L, t) +

∫ ∞
L

a(L′)b(L′ → L)V (t)n(L′, t) dL′︸ ︷︷ ︸
breakage

n(L = 0, t) =
B (Cα(t),Cβ(t),T (t))

G (Cα(t),Cβ(t),T (t))
Boundary condition

n(L, t = 0) = n0(L) Initial condition (seed)

n(L, t) = crystal size distribution V (t) = volume of slurry
T (t) = crystallizer temperature G = growth rate
a, b = rates of breakage B = birth rate
cα/β = concentration of α/β-lactose in solution n0(L) = seed
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Mathematical modelling and process dynamics

Moments

Moment µi of the crystal size distribution n(L, t) :

µi (t) =

∫ ∞
0

n(L, t)LidL

For i = 0, µ0 ∼ number of crystals

For i = 1, µ1 ∼ length of crystals

For i = 2, µ2 ∼ surface of crystals

For i = 3, µ3 ∼ volume of crystals
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Optimal control of the crystalization of α-lactose monohydrate Problem

Mathematical model

Mass balances : mH2O(t), mα(t), mβ(t)

↪→ 3 ODE + integral = Integro-differential equations

Energy balances : T (t), Tjacket(t)

↪→ 2 ODE + integral = Integro-differential equations

Population balance : n(L, t) of particles of size L

↪→ 1 PDE

Problem

Set of Integro-differential equations coupled + PDE + nonlinearity
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Optimal control of the crystalization of α-lactose monohydrate Problem

Optimal control problem

By acting on the feed rate of solution qH2O(t), on the set-point
temperature Tsp(t) and on the crystal seed n0(L) we wish to

1. Specific criterion
steer the process in such a way that the growth of particles within the
size range 130µm ≤ L ≤ 330µm is maximized.

2. Non-specific criterion

minimize the weighted mean size diameter d43 =

∫∞
0 n(L, tf )L4dL∫∞
0 n(L, tf )L3dL
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Optimal control of the crystalization of α-lactose monohydrate Reduced model for control

States :
n(L, t), cα(t), cβ(t), mH2O(t), T (t), Tjacket(t)

Dependent states : mcry(t), V (t)

Controls :
u1(t) = Tsp(t) = set-point temperature
u2(t) = qH2O(t) = feed rate of solution

Parameters :
n0(L) = crystals size distribution of seed of given mass

Cost function :

kvρcryV (tf )

∫ L2

L1

L3n(L, tf )dL = crystal mass in interval [L1, L2]
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Optimal control of the crystalization of α-lactose monohydrate Reduced model for control

Use moment approach

µi (t) =

∫ ∞
0

Lin(L, t)dL, i = 0, . . . ,N

Population balance splits into

dµi (t)

dt
+

V ′(t)

V (t)
µi (t)− iG (cα(t), cβ(t),T (t))µi−1(t)) = 0,

i = 1, . . . ,N

dµ0(t)

dt
=

V ′(t)

V (t)
µ0(t)− B (cα(t), cβ(t),T (t)) = 0

Parameters :

pi = µi (0), i = 0, . . . ,N moments of unknown seed
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Optimal control of the crystalization of α-lactose monohydrate Reduced model for control

New set of states :
µ0(t), . . . , µN(t),T (t),Tjacket(t), cα(t), cβ(t),mH2O(t)

Controls :
u1(t) = Tsp(t) = set-point temperature
u2(t) = qH2O(t) = feed rate of solution

Parameters :
Unknown moments of the unknown seed of known mass

Cost function :
? ? ?
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Optimal control of the crystalization of α-lactose monohydrate Reduced model for control

Procedure

Choose target CSD ntarget(L), which has its bulk of crystal mass in
the range [L1, L2].

Normalize to unit mass and compute moments of target µi ,target.

Obtain weighted least squares objective

min→
N∑
i=0

wi (µi (tf )− µi ,target)2

Pull moments of unknown n(L, tf ) to moments of target such that
third moment matches
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Optimal control of the crystalization of α-lactose monohydrate Reduced model for control

minimize
N∑
i=1

wi (µi (tf )− µi ,target)2

subject to population dynamics (moments)
mass balances
energy balance
initial conditions
V0 ≤ V (t) ≤ Vmax

0 ≤ T (t) ≤ 70◦C
0 ≤ p ≤ Pmax

supersaturation
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Optimal control of the crystalization of α-lactose monohydrate Reduced model for control

Model : PDE+ODEs
Cost function :

kvρcryV (tf )

∫ L2

L1

L3n(L, tf )dL

Controls : Tcnsg(t), qH2O(t)
Parameter : n(L, t = 0)
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Optimal control of the crystalization of α-lactose monohydrate Reduced model for control

Model : PDE+ODEs
cost function :

kvρcryV (tf )

∫ L2

L1

L3n(L, tf )dL

Controls : Tcnsg(t), qH2O(t)
Parameters : n(L, 0)

Reduce model
(Moment approach)

⇓

Model : ODEs
Cost function : min→
N∑
i=0

(µi (tf )− µi ,target)2

Controls : Tcnsg(t), qH2O(t)
Parameters : µi (0)
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Model : PDE+ODEs
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∫ L2

L1
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Reduce model
(Moment approach)

⇓

Model : ODEs
Cost function : min→
N∑
i=0

(µi (tf )− µi ,target)2

Controls : Tcnsg(t), qH2O(t)
Parameter : µi (0)

Control
⇒

PSOPT, ACADO

Optimal control :
T ∗cnsg(t), q∗H2O

(t)
Optimal parameters :

µi (0)∗
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Cost function :

kvρcryV (tf )

∫ L2

L1

L3n(L, tf )dL

Controls : Tcnsg(t), qH2O(t)
Parameters : n(L, 0)

Simulate
⇐

Optimal controls :
T ∗cnsg(t), q∗H2O

(t)
Optimal parameters :

n(L, 0)∗

Reduce the model
(Moment approach)

⇓

MAXENT
⇑

Reconstruct

Model : ODEs
Cost function : min→
N∑
i=0

(µi (tf )− µi ,target)2

Controls : Tcnsg(t), qH2O(t)
Parameters : µi (0)

Control
⇒

PSOPT, ACADO

Optimal controls :
T ∗cnsg(t), q∗H2O

(t)
Optimal parameters :

µi (0)∗
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Optimal control of the crystalization of α-lactose monohydrate Reduced model for control

Numerical resolution

ACADO : software environment and algorithm collection for
automatic control and dynamic optimization.

http ://www.acadotoolkit.org

PSOPT :

http ://www.psopt.org/Home

Method of reconstruction of distribution : Maximum entropy

(P)
maximize S [p] = −

∫ ∞
0

p(x) ln p(x)dx

subject to

∫ ∞
0

p(x)x idx = µi , i = 0, . . . ,N
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Optimal control of the crystalization of α-lactose monohydrate Results

Results
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Optimal control of the crystalization of α-lactose monohydrate Results

Results
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