
Geometric optimal control for microorganisms

J. Rouot, INRIA Sophia Antipolis, McTAO Team

MODE-SMAI 2016, 23th March

INP-ENSEEIHT Toulouse

Joint work with P. Bettiol, B. Bonnard and D. Takagi
jeremy.rouot@inria.fr



Life at low Reynolds number (Purcell, 1977)

Shape deformations of a microswimmer



The Purcell Three-link swimmer

Two-link swimmer: a scallop.

Theorem. A scallop cannot swim.

.

Three-link swimmer: the Purcell swimmer.
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Dynamics.

q̇ = D(α)G(θ)θ̇ , D(α) =

cos(α) −sin(α) 0
sin(α) cos(α) 0

0 0 1

 ,

θ̇ = H(θ)τ, τ is the torque, θ = (θ1,θ2), q = (x,y,α).

The control is given by u := θ̇ . G and H have complicated expressions, this is a
complex problem even locally.



Purcell: mathematical model

Mechanical energy to minimize. E(u) =
∫ T

0 (uH−1u)dt.

Mechanical nonholonomic system.

Ẋ(t) = u1(t)F1(X(t))+u2(t)F2(X(t)), X = (θ1,θ2,x,y,α).

Sub-Riemannian geometry. (M,D,g) where M is an n−dimensional manifold,
D a distribution of constant rank m≤ n and g is a Riemannian metric on D.
D1 = span{F1,F2}, D2 = D1∪span{[F1,F2]}, D3 = D2∪span{[[F1,F2],F1], [[F1,F2],F2]}.
At a point X0, D1(X0) is a (2,3,5)−distribution.

- compute the nilpotent approximation of the Purcell swimmer

- consider a simplified model: Copepod swimmer

Find closed projections of geodesics.

Definition. A stroke is a periodic motion of the shape variables (θ1,θ2) associated
with a periodic control producing a net displacement of the position variables after
one period T (we can fixed T = 2π).



Example of a Purcell stroke.

u1 = 0
u2 =−1

u2 = 0

α1 α2
u1 = 1

u2 = 1

u1 = 0

u2 = 0

u1 =−1

The displacement associated with the sequence stroke is

β (t) = (exp tF2 exp−tF1 exp−tF2 exp tF1)(X(0))

and using Baker-Campbell-Hausdorff formula

β (t) = exp(t2[F1,F2]+o(t2))(X(0))∼ X(0)+ t2[F1,F2](X(0))



Copepod swimmer (Takagi, 2014)
Symmetric model of swimming of an abundant variety of zooplankton.
Aim: Build a micro swimmer device (contact Takagi).
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Controlled dynamics.

ẋ0 =
u1 sin(θ1)+u2 sin(θ2)

2+ sin2(θ1)+ sin2(θ2)
, θ̇1 = u1, θ̇2 = u2 (constraint: 0≤ θ1 ≤ θ2 ≤ π).

Minimize the Mechanical energy. q̇Mq̇t where q = (x0,θ1,θ2) and M is the
symmetric matrix

M =

2−1/2(cos2(θ1)+ cos2(θ2)) −1/2sin(θ1) −1/2sin(θ2)
−1/2sin(θ1) 1/3 0
−1/2sin(θ2) 0 1/3





Two types of geometric motions

First case: The two legs are assumed to oscillate sinusoidally according to

θ1 = Φ1+acos(t), θ2 = Φ2+acos(t + k2)

with a = π/4, Φ1 = π/4, Φ2 = 3π/4 and k2 = π/2. This produces a displacement
x0(2π) = 0.2.
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Second case: The two legs are paddling in sequence followed by a recovery stroke
performed in unison. In this case the controls u1 = θ̇1, u2 = θ̇2 produce bang
arcs to steer the angles between from the boundary 0 of the domain to the
boundary π, while the unison sequence corresponds to a displacement from π to
0 with the constraint θ1 = θ2.
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Normal and Abnormal curves

• The driftless control system is

q̇(t) =
2

∑
i=1

ui(t)Fi(q(t))

where q = (x0,θ1,θ2), Fi =
sin(θi)

∆

∂

∂x0
+ ∂

∂θi
and ∆ = 2+ sin2(θ1)+ sin2(θ2).

ż = u1
−→
H1(z)+u2

−→
H2(z), z = (q, p)

where
−→
Hi are the Hamiltonian vector fields of the Hamiltonian lifts Hi(z) =

〈p,Fi(q)〉, i = 1,2.

• Pontryagin Maximum Principle:

∃ p(.) ∈W 1,1([0,T ];R2) and a constant p0 ≤ 0 such that for a.e. t ∈ [0,T ],

- (p(.), p0) 6= (0,0)
- ∂H

∂u = 0 where H(z, p0,u) = u1H1(z)+u2H2(z)+ p0(u2
1+u2

2)

• Two types of extremals:

p0 =−1/2: normal extremals given by the true Hamiltonian

Hn =
1
2
(H2

1 +H2
2 ).

p0 = 0: abnormal extremals.



Abnormal curves. We have H1(z) = H2(z) = {H1,H2}(z) = 0 and the controls are
given by

u1{{H1,H2} ,H1}(z)+u2{{H1,H2} ,H2}(z) = 0.

Computations for the copepod swimmer.
Lemma. The surface Σ : {q; det(F1(q),F2(q), [F1,F2](q)) = 0} contained abnormal
curves and is given by

• θ1|2 = 0 or π,

• θ1 = θ2.

It is formed by the boundary of the physical domain: θ1|2 ∈ [0,π],θ1 ≤ θ2, with
respective controls u1 = 0, u2 = 0 or u1 = u2.

0

.

.

π

π θ1

: abnormal curve

θ2

Remark. A recent contribution proves that a trajectory with a corner of this type
cannot be optimal.



Analysis outside the singular set Σ

H3 = 〈p,F3(q)〉, with F3 = [F1,F2] and the set {q,H1,H2,H3} are coordinates.
(the problem is isoperimetric since p1 is a first integral: ṗ1 = 0).

Equations in the Poincaré coordinates.

Ḣ1 = dH1(
−→
H n) = {H1,H2}H2 = H2H3,

Ḣ2 = dH2(
−→
H n) = {H2,H1}H1 =−H1H3,

Ḣ3 = dH3(
−→
H n) = {H3,H1}H1+{H3,H2}H2

with {H3,H1}(z) = 〈p, [[F1,F2] ,F1] (q)〉 , {H3,H2}(z) = 〈p, [[F1,F2] ,F2] (q)〉 .
At a contact point {F1,F2,F3} forms a frame, therefore

[[F1,F2] ,F1] (q) =
3

∑
i=1

λi(q)Fi(q), [[F1,F2] ,F2] (q) =
3

∑
i=1

λ
′
i (q)Fi(q),

and computing one gets,

λ1 = λ2 = 0,
∂ f
∂θ1

= λ3 f and λ
′
1 = λ

′
2 = 0,

∂ f
∂θ2

= λ
′
3 f .



We conclude that

Ḣ1 = H2H3, Ḣ2 =−H1H3,

Ḣ3 = H3
(
λ3H1+λ

′
3H2
)
.

Integration. Time reparameterization: ds = H3dt

dH1

ds
= H2,

dH2

ds
=−H1,

dH3

ds
= λ3H1+λ

′
3H2.

Hence H ′′1 +H1 = 0 when differentiating with respect to the new time s (harmonic
oscillator).
Furthermore with the approximation λ3,λ

′
3 constant,

dH3

ds
= Acos(s+ρ).

We obtain, up to reparameterization, trigonometric functions for the controls.



Numerical results

Applying the PMP, we solve numerically boundary value problem:
q̇ = ∂Hn

∂ p , ṗ =−∂Hn
∂q ,

x0(0) = 0, x0(2π) = x f ,
θ1|2(0) = θ1|2(2π), p2|3(0) = p2|3(2π).

where Hn is the true Hamiltonian in the normal case

Hn =
1
2
(
H2

1 +H2
2
)
.

Two softwares used:

• Bocop (direct method : discretization of the state and control spaces → NLP
problem) gives an initialisation for the shooting algorithm of the HamPath soft-
ware.

• HamPath (indirect method : shooting algorithm, homotopic methods) compute
a normal stroke and second order optimality conditions.



Exponential mapping

First conjugate time tttccc: the exponential map

expx0
: IR×C →M, (t, p0) 7→ x(t,x0, p0)

is not immersive at (tc, p0).
After tc, the normal geodesic ceases to be minimizing with respect to the C1-topology.

expx0

C = { p0 | H2
1 (x0, p0)+H2

2 (x0, p0)=1}

IR ×
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Comparisons of strokes

The geometric efficiency of a stroke γ is defined by the ratio xxx000///LLL(((γγγ))),

• L(γ) is the length of the stroke γ (independent of the time parameterization),

• x0 the corresponding displacement.

”Simple loops” are the only strokes without conjugate points.
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Curves of efficiencies obtained by continuation on x0(T ). Stroke corresponding to the maximum of efficiency.



Conclusion about the Copepod swimmer

• Complex politics: classification of periodic planar curves.

• Simple loops are the only candidates.

• The abnormal triangle is not optimal due to the existence of corners.

• Concept of geometric efficiency.

Perspectives:

• Maximum Principle with state constraints.

• Compute the global optimum → related to count the number of strokes on each
energy level.

• Micro swimmer devices with Takagi.



Nilpotent Approximation in SR Geometry

Aim: Compute a tangent structure which approximate the tangent space of a SR
manifold (which has also the SR structure).

Given a distribution D : M→ T M. Near x0, D(x0) = span{F1(x0), . . . ,Fm(x0)}.
• compute orders and weights of functions and vector fields → compute privileged

coordinates.

• the approximate vector fields generate a nilpotent Lie algebra with dilations.



Nilpotent Approximation for the Purcell

Theorem. The nilpotent approximation at zero is

F̂1 =
∂

∂x1
+O(|x|3), F̂2 =

∂

∂x2
+ x1

∂

∂x3
+

∂

∂x4
+ x2

1
∂

∂x5
+O(|x|3).

Remark. We have ϕ ∈ Diff(M) acting on Fi such that:

(ϕ ∗F1)(x) = F̂1(x), (ϕ ∗F2)(x) = F̂2(x).

θ1 = x1 and θ2 = x2 are invariant by the ϕ.

Theorem. 1. The system associated to normal extremals is integrable and the
solutions can be expressed as a polynomial functions of the first and the second
order elliptic functions (u,sn(u),cn(u),dn(u),E(u)),

2. The system associated to anormal extremals is integrable using polynomial
functions.



Normal extremals

Hamiltonian lifts.

H1 = 〈p, F̂1(x)〉= p1, H2 = 〈p, F̂2(x)〉= p2+ p3x1+ p4x3+ p5x2
1,

H3 = 〈p, [F̂1, F̂2](x)〉=−p3−2x1p5, H4 = 〈p, [[F̂1, F̂2], F̂1](x)〉=−2p5,

H5 = 〈p, [[F̂1, F̂2], F̂2](x)〉= p4.

SR problem.

ẋ =
2

∑
i=1

uiF̂i, min
u

∫ T

0
(u2

1+u2
2)dt.

Pontryagin maximum principle. If x(.) is optimal then (x(.), p(.)) is solution of
the system given by the Hamiltonian:

H(x, p) =
1
2
(H1(x, p)2+H2(x, p)2).



We consider Poincaré coordinates

Ḣ1 = dH1(
−→
H ) = {H1,H2}H2 = 〈p, [F̂1, F̂2](x)〉H2 = H2H3,

Ḣ2 =−H3H1, Ḣ3 = H1H4+H2H5,

Ḣ4 = 0 hence H4 = c4, Ḣ5 = 0 hence H5 = c5.

Fixing the level energy, H2
1 +H2

2 = 1 we set H1 = cos(θ) and H2 = sin(θ).

Ḣ1 =−sin(θ)θ̇ = H2H3 = sin(θ)H3.

Hence θ̇ =−H3 and

θ̈ =−(H1c4+H2c5) =−c4 cos(θ)− c5 sin(θ) =−ω
2 sin(θ +φ)

where ω and φ are constants.
By identification, we get ω2 sin(φ) = c4 and ω2 cos(φ) = c5.
Let ψ = θ +φ , we get

1
2

ψ̇
2−ω

2 cos(ψ) = B,

where B is a constant.



Oscillating case. We set u = ωt +ϕ0, k is the modulus of elliptic functions.

x1(u) =
1
ω

[
x1(ϕ0)−2k sin(φ)cn(u ,k)+(−u+2E (u ,k))cos(φ)

]
,

x2(u) =
1
ω

[
x2(ϕ0)−2k cos(φ)cn(u ,k)+(u−2E (u ,k))sin(φ)

]
,

x3(u) . . . ,x4(u) . . . ,x5(u) . . .

Family of strokes of period 444KKK(((kkk)))///ωωω (dependance on initial conditions (x(0), p(0)).

Family of eight shape strokes



For several normal extremals parametrized by p(0), we compute the first conjugate
time t1c.
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There is an affine dependance between the first conjugate time and the period of
the strokes.

0.3ωt1c−0.4 < K(k)< 0.5ωt1c−0.8



Rotating case.

x1(u) =
(
−2 cos(φ)u+2 cos(φ)E(u/k,k)k−2 sin(φ)dn(u/k,k)k+ cos(φ)uk2 + x1(ϕ0)k2)

ω
−1k−2,

x2(u) =
(
2 sin(φ)u−2 sin(φ)E(u/k,k)k−2 cos(φ)dn(u/k,k)k− sin(φ)uk2 + x2(ϕ0)k2)

ω
−1k−2,

x3(u) . . . ,x4(u) . . . ,x5(u) . . .

Family of strokes of period 222πππ///ωωω.



Numerical simulations on the real system
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Extremals with the same cost

Symmetry with respect to θ0.

Lemma. If θ(t), α(t), x(t), y(t) is an extremal solution associated to u(.) with
θ(0) = 0, then

x(t) = cos(α0)x(t)− sin(α0)y(t),
y(t) = sin(α0)x(t)+ cos(α0)y(t)

is the solution associated with u(.) with α(0) = α0, (x(0),y(0)) = (x0,y0) and with
the same cost.

Standard second order sufficient conditions.

• local minimizer for L∞-topology

• this extremum is locally unique.

→ need to set refined sufficient conditions (cf R. Vinter).



Circle as a right end-point constraint

q̇ = ∂H
∂ p , ṗ =−∂H

∂q ,

x(0) = 0, y(0) = 0, x(T )2+ y(T )2−R2 = 0,
α1|2(T ) = α1|2(0), θ(T ) = θ(0),
pα1|2(T ) = pα1|2(0), pθ(T ) = pθ(0),
px(T )y(T )− py(T )x(T ) = 0.

Taking the initial position angle θ0 as a parameter, minimizers are embed in a one-
parameter family of minimizers.
→ the non-uniqueness of minimizers.
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Perspectives

• relations between the true system and its nilpotent approximation: continuation
on small strokes of the nilpotent system.

• find other homotopy classes of strokes for the true system.

• existence of smooth abnormal strokes (difference with Copepod).

• refined second order sufficient conditions.
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