Geometric optimal control for microorganisms

J. Rouot, INRIA Sophia Antipolis, McTAO Team

MODE-SMAI 2016, 23th March

INP-ENSEEIHT Toulouse

Joint work with P. Bettiol, B. Bonnard and D. Takagi *jeremy.rouot@inria.fr*

Life at low Reynolds number (Purcell, 1977)

Shape deformations of a microswimmer

The Purcell Three-link swimmer

Two-link swimmer: a scallop.

Theorem. A scallop cannot swim.

Three-link swimmer: the Purcell swimmer.

The control is given by $u := \dot{\theta}$. G and H have complicated expressions, this is a complex problem even locally.

Mechanical energy to minimize. $E(u) = \int_0^T (uH^{-1}u) dt$.

Mechanical nonholonomic system.

 $\dot{X}(t) = u_1(t)F_1(X(t)) + u_2(t)F_2(X(t)), \quad X = (\theta_1, \theta_2, x, y, \alpha).$

Sub-Riemannian geometry. (M,D,g) where M is an n-dimensional manifold, D a distribution of constant rank $m \le n$ and g is a Riemannian metric on D. $D_1 = \operatorname{span}\{F_1, F_2\}, D_2 = D_1 \cup \operatorname{span}\{[F_1, F_2]\}, D_3 = D_2 \cup \operatorname{span}\{[F_1, F_2], F_1], [[F_1, F_2], F_2]\}.$ At a point X_0 , $D_1(X_0)$ is a (2,3,5)-distribution.

- compute the nilpotent approximation of the Purcell swimmer

- consider a simplified model: Copepod swimmer

Find closed projections of geodesics.

Definition. A stroke is a periodic motion of the shape variables (θ_1, θ_2) associated with a periodic control producing a net displacement of the position variables after one period T (we can fixed $T = 2\pi$).

Example of a Purcell stroke.

The displacement associated with the sequence stroke is

$$\boldsymbol{\beta}(t) = (\exp tF_2 \exp - tF_1 \exp - tF_2 \exp tF_1) (\boldsymbol{X}(0))$$

and using Baker-Campbell-Hausdorff formula

$$\beta(t) = \exp(t^2[F_1, F_2] + o(t^2))(X(0)) \sim X(0) + t^2[F_1, F_2](X(0))$$

Copepod swimmer (Takagi, 2014)

Symmetric model of swimming of an abundant variety of zooplankton. *Aim:* **Build a micro swimmer** device (contact Takagi).

Controlled dynamics.

$$\dot{x_0} = \frac{u_1 \sin(\theta_1) + u_2 \sin(\theta_2)}{2 + \sin^2(\theta_1) + \sin^2(\theta_2)}, \quad \dot{\theta_1} = u_1, \quad \dot{\theta_2} = u_2 \quad \text{(constraint: } 0 \le \theta_1 \le \theta_2 \le \pi\text{)}.$$

Minimize the Mechanical energy. $\dot{q}M\dot{q}^t$ where $q = (x_0, \theta_1, \theta_2)$ and M is the symmetric matrix

$$M = \begin{pmatrix} 2 - 1/2(\cos^2(\theta_1) + \cos^2(\theta_2)) & -1/2\sin(\theta_1) & -1/2\sin(\theta_2) \\ -1/2\sin(\theta_1) & 1/3 & 0 \\ -1/2\sin(\theta_2) & 0 & 1/3 \end{pmatrix}$$

Two types of geometric motions

First case: The two legs are assumed to oscillate sinusoidally according to

$$\theta_1 = \Phi_1 + a\cos(t), \quad \theta_2 = \Phi_2 + a\cos(t+k_2)$$

with $a = \pi/4$, $\Phi_1 = \pi/4$, $\Phi_2 = 3\pi/4$ and $k_2 = \pi/2$. This produces a displacement $x_0(2\pi) = 0.2.$ 3π/4 Angle π/2 $\pi/4$ $\theta_1(t)$ $\theta_2(t)$ 0 π/2 $3\pi/2$ 2π π 0.4 Position $x_0(t)$ 0.2 -0.2 -0.4 -0.6L π/2 3π/2 <u>2</u>π Time t

Second case: The two legs are paddling in sequence followed by a recovery stroke performed in **unison**. In this case the controls $u_1 = \dot{\theta}_1$, $u_2 = \dot{\theta}_2$ produce bang arcs to steer the angles between from the boundary 0 of the domain to the boundary π , while the unison sequence corresponds to a displacement from π to 0 with the constraint $\theta_1 = \theta_2$.

Normal and Abnormal curves

• The driftless control system is

$$\dot{q}(t) = \sum_{i=1}^{2} u_i(t) F_i(q(t))$$

where $q = (x_0, \theta_1, \theta_2)$, $F_i = \frac{\sin(\theta_i)}{\Delta} \frac{\partial}{\partial x_0} + \frac{\partial}{\partial \theta_i}$ and $\Delta = 2 + \sin^2(\theta_1) + \sin^2(\theta_2)$. $\dot{z} = u_1 \overrightarrow{H_1}(z) + u_2 \overrightarrow{H_2}(z), \quad z = (q, p)$

where \overrightarrow{H}_i are the Hamiltonian vector fields of the Hamiltonian lifts $H_i(z) = \langle p, F_i(q) \rangle, i = 1, 2$.

• Pontryagin Maximum Principle:

 $\exists p(.) \in W^{1,1}([0,T]; \mathbb{R}^2)$ and a constant $p^0 \le 0$ such that for a.e. $t \in [0,T]$, - $(p(.), p^0) \ne (0,0)$

-
$$\frac{\partial H}{\partial u} = 0$$
 where $H(z, p^0, u) = u_1 H_1(z) + u_2 H_2(z) + p^0 (u_1^2 + u_2^2)$

• Two types of extremals:

 $p_0 = -1/2$: normal extremals given by the true Hamiltonian

$$H_n = \frac{1}{2}(H_1^2 + H_2^2)$$

 $p_0 = 0$: abnormal extremals.

Abnormal curves. We have $H_1(z) = H_2(z) = \{H_1, H_2\}(z) = 0$ and the controls are given by

 $u_1 \{ \{H_1, H_2\}, H_1 \} (z) + u_2 \{ \{H_1, H_2\}, H_2 \} (z) = 0.$

Computations for the copepod swimmer.

Lemma. The surface $\Sigma : \{q; \det(F_1(q), F_2(q), [F_1, F_2](q)) = 0\}$ contained abnormal curves and is given by

- $heta_{1|2}=0$ or π ,
- $\theta_1 = \theta_2$.

It is formed by the **boundary of the physical domain**: $\theta_{1|2} \in [0, \pi], \theta_1 \leq \theta_2$, with respective controls $u_1 = 0$, $u_2 = 0$ or $u_1 = u_2$.

Remark. A recent contribution proves that a trajectory with a corner of this type cannot be optimal.

Analysis outside the singular set Σ

 $H_3 = \langle p, F_3(q) \rangle$, with $F_3 = [F_1, F_2]$ and the set $\{q, H_1, H_2, H_3\}$ are coordinates. (the problem is isoperimetric since p_1 is a first integral: $\dot{p}_1 = 0$).

Equations in the Poincaré coordinates.

$$\dot{H}_1 = dH_1(\overrightarrow{H}_n) = \{H_1, H_2\} H_2 = H_2 H_3, \dot{H}_2 = dH_2(\overrightarrow{H}_n) = \{H_2, H_1\} H_1 = -H_1 H_3, \dot{H}_3 = dH_3(\overrightarrow{H}_n) = \{H_3, H_1\} H_1 + \{H_3, H_2\} H_2$$

with $\{H_3, H_1\}(z) = \langle p, [[F_1, F_2], F_1](q) \rangle$, $\{H_3, H_2\}(z) = \langle p, [[F_1, F_2], F_2](q) \rangle$. At a *contact point* $\{F_1, F_2, F_3\}$ forms a frame, therefore

$$[[F_1, F_2], F_1](q) = \sum_{i=1}^3 \lambda_i(q) F_i(q), \quad [[F_1, F_2], F_2](q) = \sum_{i=1}^3 \lambda'_i(q) F_i(q),$$

and computing one gets,

$$\lambda_1 = \lambda_2 = 0, \frac{\partial f}{\partial \theta_1} = \lambda_3 f \text{ and } \lambda_1' = \lambda_2' = 0, \frac{\partial f}{\partial \theta_2} = \lambda_3' f.$$

We conclude that

$$\dot{H}_1 = H_2 H_3, \quad \dot{H}_2 = -H_1 H_3,$$

 $\dot{H}_3 = H_3 \left(\lambda_3 H_1 + \lambda'_3 H_2 \right).$

Integration. Time reparameterization: $ds = H_3 dt$

$$\frac{dH_1}{ds} = H_2, \qquad \frac{dH_2}{ds} = -H_1, \qquad \frac{dH_3}{ds} = \lambda_3 H_1 + \lambda_3' H_2.$$

Hence $H_1'' + H_1 = 0$ when differentiating with respect to the new time s (harmonic oscillator).

Furthermore with the approximation λ_3, λ_3' constant,

$$\frac{dH_3}{ds} = A\cos(s+\rho).$$

We obtain, up to reparameterization, trigonometric functions for the controls.

Numerical results

Applying the PMP, we solve numerically boundary value problem:

$$\begin{cases} \dot{q} = \frac{\partial H_n}{\partial p}, & \dot{p} = -\frac{\partial H_n}{\partial q}, \\ x_0(0) = 0, & x_0(2\pi) = x_f, \\ \theta_{1|2}(0) = \theta_{1|2}(2\pi), & p_{2|3}(0) = p_{2|3}(2\pi). \end{cases}$$

where H_n is the true Hamiltonian in the normal case

$$H_n = \frac{1}{2} \left(H_1^2 + H_2^2 \right).$$

Two softwares used:

- Bocop (direct method: discretization of the state and control spaces → NLP problem) gives an initialisation for the shooting algorithm of the HamPath software.
- HamPath (*indirect method*: shooting algorithm, homotopic methods) compute a normal stroke and **second order optimality conditions**.

First conjugate time t_c: the exponential map

$$\exp_{x_0}: \mathbb{R} \times \mathscr{C} \to M, \quad (t, p_0) \mapsto x(t, x_0, p_0)$$

is not immersive at (t_c, p_0) . After t_c , the normal geodesic ceases to be minimizing with respect to the C^1 -topology.

Comparisons of strokes

The geometric efficiency of a stroke γ is defined by the ratio $x_0/L(\gamma)$,

- $L(\gamma)$ is the length of the stroke γ (independent of the time parameterization),
- x_0 the corresponding displacement.

"Simple loops" are the only strokes without conjugate points.

Conclusion about the Copepod swimmer

- Complex politics: classification of periodic planar curves.
- Simple loops are the only candidates.
- The abnormal triangle is not optimal due to the existence of corners.
- Concept of geometric efficiency.

Perspectives:

- Maximum Principle with state constraints.
- \bullet Compute the global optimum \rightarrow related to count the number of strokes on each energy level.
- Micro swimmer devices with Takagi.

Aim: Compute a tangent structure which approximate the tangent space of a SR manifold (which has also the SR structure).

Given a distribution $D: M \to TM$. Near x_0 , $D(x_0) = \operatorname{span}\{F_1(x_0), \dots, F_m(x_0)\}$.

- \bullet compute orders and weights of functions and vector fields \rightarrow compute privileged coordinates.
- the approximate vector fields generate a **nilpotent Lie algebra** with dilations.

Nilpotent Approximation for the Purcell

Theorem. The nilpotent approximation at zero is

$$\hat{F}_1 = \frac{\partial}{\partial x_1} + O(|x|^3), \quad \hat{F}_2 = \frac{\partial}{\partial x_2} + x_1 \frac{\partial}{\partial x_3} + \frac{\partial}{\partial x_4} + x_1^2 \frac{\partial}{\partial x_5} + O(|x|^3).$$

Remark. We have $\varphi \in \text{Diff}(M)$ acting on F_i such that:

 $(\boldsymbol{\varphi} * F_1)(x) = \hat{F}_1(x), \ (\boldsymbol{\varphi} * F_2)(x) = \hat{F}_2(x).$

 $\theta_1 = x_1$ and $\theta_2 = x_2$ are invariant by the φ .

- **Theorem.** 1. The system associated to normal extremals is **integrable** and the solutions can be expressed as a polynomial functions of the first and the second order elliptic functions $(u, \operatorname{sn}(u), \operatorname{cn}(u), \operatorname{dn}(u), E(u))$,
- 2. The system associated to anormal extremals is **integrable** using polynomial functions.

Hamiltonian lifts.

$$\begin{aligned} H_1 &= \langle p, \hat{F}_1(x) \rangle = p_1, \\ H_3 &= \langle p, [\hat{F}_1, \hat{F}_2](x) \rangle = -p_3 - 2x_1 p_5, \\ H_5 &= \langle p, [[\hat{F}_1, \hat{F}_2], \hat{F}_2](x) \rangle = p_4. \end{aligned}$$

$$\begin{aligned} H_2 &= \langle p, \hat{F}_2(x) \rangle = p_2 + p_3 x_1 + p_4 x_3 + p_5 x_1^2, \\ H_4 &= \langle p, [[\hat{F}_1, \hat{F}_2], \hat{F}_1](x) \rangle = -2 p_5, \\ H_5 &= \langle p, [[\hat{F}_1, \hat{F}_2], \hat{F}_2](x) \rangle = p_4. \end{aligned}$$

SR problem.

$$\dot{x} = \sum_{i=1}^{2} u_i \hat{F}_i, \quad \min_u \int_0^T (u_1^2 + u_2^2) dt.$$

Pontryagin maximum principle. If x(.) is optimal then (x(.), p(.)) is solution of the system given by the Hamiltonian:

$$H(x,p) = \frac{1}{2}(H_1(x,p)^2 + H_2(x,p)^2).$$

We consider Poincaré coordinates

$$\dot{H}_1 = dH_1(\vec{H}) = \{H_1, H_2\}H_2 = \langle p, [\hat{F}_1, \hat{F}_2](x)\rangle H_2 = H_2H_3,$$

$$\dot{H}_2 = -H_3H_1,$$
 $\dot{H}_3 = H_1H_4 + H_2H_5,$
 $\dot{H}_4 = 0$ hence $H_4 = c_4,$ $\dot{H}_5 = 0$ hence $H_5 = c_5.$

Fixing the level energy, $H_1^2 + H_2^2 = 1$ we set $H_1 = \cos(\theta)$ and $H_2 = \sin(\theta)$.

$$\dot{H}_1 = -\sin(\theta)\dot{\theta} = H_2H_3 = \sin(\theta)H_3.$$

Hence $\dot{\theta} = -H_3$ and

$$\ddot{\theta} = -(H_1c_4 + H_2c_5) = -c_4\cos(\theta) - c_5\sin(\theta) = -\omega^2\sin(\theta + \phi)$$

where ω and ϕ are constants. By identification, we get $\omega^2 \sin(\phi) = c_4$ and $\omega^2 \cos(\phi) = c_5$. Let $\psi = \theta + \phi$, we get

$$\frac{1}{2}\dot{\psi}^2 - \omega^2\cos(\psi) = B,$$

where B is a constant.

Oscillating case. We set $u = \omega t + \varphi_0$, k is the modulus of elliptic functions.

$$x_{1}(u) = \frac{1}{\omega} \Big[x_{1}(\varphi_{0}) - 2k \sin(\phi) \operatorname{cn}(u,k) + (-u + 2E(u,k)) \cos(\phi) \Big],$$

$$x_{2}(u) = \frac{1}{\omega} \Big[x_{2}(\varphi_{0}) - 2k \cos(\phi) \operatorname{cn}(u,k) + (u - 2E(u,k)) \sin(\phi) \Big],$$

$$x_{3}(u) \dots x_{4}(u) \dots x_{5}(u) \dots$$

Family of strokes of **period** $4K(k)/\omega$ (dependance on initial conditions (x(0), p(0)).

Family of eight shape strokes

For several normal extremals parametrized by p(0), we compute the first conjugate time t_{1c} .

There is an affine dependance between the first conjugate time and the period of the strokes. $0.3\omega t_{1c} - 0.4 < K(k) < 0.5\omega t_{1c} - 0.8$

Rotating case.

$$x_{1}(u) = (-2\cos(\phi)u + 2\cos(\phi)E(u/k,k)k - 2\sin(\phi)\ln(u/k,k)k + \cos(\phi)uk^{2} + x_{1}(\phi_{0})k^{2})\omega^{-1}k^{-2},$$

$$x_{2}(u) = (2\sin(\phi)u - 2\sin(\phi)E(u/k,k)k - 2\cos(\phi)\ln(u/k,k)k - \sin(\phi)uk^{2} + x_{2}(\phi_{0})k^{2})\omega^{-1}k^{-2},$$

$$x_{3}(u)\dots,x_{4}(u)\dots,x_{5}(u)\dots$$

Family of strokes of **period** $2\pi/\omega$.

Numerical simulations on the real system

Non self-intersecting and 8 solutions. There is no conjugate time $t_{1c} \in [0, 2\pi]$.

Symmetry with respect to θ_0 .

Lemma. If $\theta(t)$, $\alpha(t)$, $\overline{x}(t)$, $\overline{y}(t)$ is an extremal solution associated to u(.) with $\theta(0) = 0$, then

$$x(t) = \cos(\alpha_0)\overline{x}(t) - \sin(\alpha_0)\overline{y}(t),$$

$$y(t) = \sin(\alpha_0)\overline{x}(t) + \cos(\alpha_0)\overline{y}(t)$$

is the solution associated with u(.) with $\alpha(0) = \alpha_0$, $(x(0), y(0)) = (\bar{x}_0, \bar{y}_0)$ and with the same cost.

Standard second order sufficient conditions.

- local minimizer for L^{∞} -topology
- this extremum is **locally unique**.

 \rightarrow need to set refined sufficient conditions (cf R. Vinter).

Circle as a right end-point constraint

$$\begin{cases} \dot{q} = \frac{\partial H}{\partial p}, & \dot{p} = -\frac{\partial H}{\partial q}, \\ x(0) = 0, & y(0) = 0, & x(T)^2 + y(T)^2 - R^2 = 0, \\ \alpha_{1|2}(T) = \alpha_{1|2}(0), & \theta(T) = \theta(0), \\ p_{\alpha_{1|2}}(T) = p_{\alpha_{1|2}}(0), & p_{\theta}(T) = p_{\theta}(0), \\ p_x(T)y(T) - p_y(T)x(T) = 0. \end{cases}$$

Taking the initial position angle θ_0 as a parameter, minimizers are embed in a oneparameter family of minimizers.

 \rightarrow the non-uniqueness of minimizers.

- relations between the true system and its nilpotent approximation: continuation on small strokes of the nilpotent system.
- find other homotopy classes of strokes for the true system.
- existence of smooth abnormal strokes (difference with Copepod).
- refined second order sufficient conditions.

- Bettiol, P., Bonnard, B., Giraldi, L., Martinon, P., Rouot, J.: The Purcell Threelink swimmer: some geometric and numerical aspects related to periodic optimal controls. Rad. Ser. Comp. App. 18, Variational Methods, Ed. by M. Bergounioux et al. (2016)
- Bonnard, B., Chyba, M., Rouot, J., Takagi, D.,: A Numerical Approach to the Optimal Control and Efficiency of the Copepod Swimmer (preprint)
- Purcell, E.M.: Life at low Reynolds number. Am. J. Phys. 45, 3–11 (1977)
- Takagi, D.: Swimming with stiff legs at low Reynolds number. Phys. Rev. E 92. (2015)