Geometric optimal control for microorganisms

J. Rouot, INRIA Sophia Antipolis, McTAO Team

MODE-SMAI 2016, 23th March
INP-ENSEEIHT Toulouse

[^0]
Life at low Reynolds number (Purcell, 1977)

$\therefore R=10^{2}$

Shape deformations of a microswimmer

The Purcell Three-link swimmer

Two-link swimmer: a scallop.
Theorem. A scallop cannot swim.

Three-link swimmer: the Purcell swimmer.

Dynamics.

$$
\dot{q}=D(\alpha) G(\theta) \dot{\theta}, \quad D(\alpha)=\left(\begin{array}{ccc}
\cos (\alpha) & -\sin (\alpha) & 0 \\
\sin (\alpha) & \cos (\alpha) & 0 \\
0 & 0 & 1
\end{array}\right),
$$

$$
\dot{\theta}=H(\theta) \tau, \quad \tau \text { is the torque, } \theta=\left(\theta_{1}, \theta_{2}\right), \quad q=(x, y, \alpha) .
$$

The control is given by $u:=\dot{\theta} . G$ and H have complicated expressions, this is a complex problem even locally.

Mechanical energy to minimize. $\quad E(u)=\int_{0}^{T}\left(u H^{-1} u\right) \mathrm{d} t$.
Mechanical nonholonomic system.

$$
\dot{X}(t)=u_{1}(t) F_{1}(X(t))+u_{2}(t) F_{2}(X(t)), \quad X=\left(\theta_{1}, \theta_{2}, x, y, \alpha\right)
$$

Sub-Riemannian geometry. (M, D, g) where M is an n-dimensional manifold, D a distribution of constant rank $m \leq n$ and g is a Riemannian metric on D.
$D_{1}=\operatorname{span}\left\{F_{1}, F_{2}\right\}, D_{2}=D_{1} \cup \operatorname{span}\left\{\left[F_{1}, F_{2}\right]\right\}, D_{3}=D_{2} \cup \operatorname{span}\left\{\left[\left[F_{1}, F_{2}\right], F_{1}\right],\left[\left[F_{1}, F_{2}\right], F_{2}\right]\right\}$. At a point $X_{0}, D_{1}\left(X_{0}\right)$ is a $(2,3,5)$-distribution.

- compute the nilpotent approximation of the Purcell swimmer
- consider a simplified model: Copepod swimmer

Find closed projections of geodesics.
Definition. A stroke is a periodic motion of the shape variables $\left(\theta_{1}, \theta_{2}\right)$ associated with a periodic control producing a net displacement of the position variables after one period T (we can fixed $T=2 \pi$).

Example of a Purcell stroke.

The displacement associated with the sequence stroke is

$$
\beta(t)=\left(\exp t F_{2} \exp -t F_{1} \exp -t F_{2} \exp t F_{1}\right)(X(0))
$$

and using Baker-Campbell-Hausdorff formula

$$
\beta(t)=\exp \left(t^{2}\left[F_{1}, F_{2}\right]+o\left(t^{2}\right)\right)(X(0)) \sim X(0)+t^{2}\left[F_{1}, F_{2}\right](X(0))
$$

Copepod swimmer (Takagi, 2014)

Symmetric model of swimming of an abundant variety of zooplankton. Aim: Build a micro swimmer device (contact Takagi).

Controlled dynamics.

$$
\dot{x_{0}}=\frac{u_{1} \sin \left(\theta_{1}\right)+u_{2} \sin \left(\theta_{2}\right)}{2+\sin ^{2}\left(\theta_{1}\right)+\sin ^{2}\left(\theta_{2}\right)}, \quad \dot{\theta_{1}}=u_{1}, \quad \dot{\theta_{2}}=u_{2} \quad\left(\text { constraint: } 0 \leq \theta_{1} \leq \theta_{2} \leq \pi\right) .
$$

Minimize the Mechanical energy. $\dot{q} M \dot{q}^{t}$ where $q=\left(x_{0}, \theta_{1}, \theta_{2}\right)$ and M is the symmetric matrix

$$
M=\left(\begin{array}{ccc}
2-1 / 2\left(\cos ^{2}\left(\theta_{1}\right)+\cos ^{2}\left(\theta_{2}\right)\right) & -1 / 2 \sin \left(\theta_{1}\right) & -1 / 2 \sin \left(\theta_{2}\right) \\
-1 / 2 \sin \left(\theta_{1}\right) & 1 / 3 & 0 \\
-1 / 2 \sin \left(\theta_{2}\right) & 0 & 1 / 3
\end{array}\right)
$$

Two types of geometric motions

First case: The two legs are assumed to oscillate sinusoidally according to

$$
\theta_{1}=\Phi_{1}+a \cos (t), \quad \theta_{2}=\Phi_{2}+a \cos \left(t+k_{2}\right)
$$

with $a=\pi / 4, \Phi_{1}=\pi / 4, \Phi_{2}=3 \pi / 4$ and $k_{2}=\pi / 2$. This produces a displacement $x_{0}(2 \pi)=0.2$.

Second case: The two legs are paddling in sequence followed by a recovery stroke performed in unison. In this case the controls $u_{1}=\dot{\theta}_{1}, u_{2}=\dot{\theta}_{2}$ produce bang arcs to steer the angles between from the boundary 0 of the domain to the boundary π, while the unison sequence corresponds to a displacement from π to 0 with the constraint $\theta_{1}=\theta_{2}$.

Normal and Abnormal curves

- The driftless control system is

$$
\dot{q}(t)=\sum_{i=1}^{2} u_{i}(t) F_{i}(q(t))
$$

where $q=\left(x_{0}, \theta_{1}, \theta_{2}\right), F_{i}=\frac{\sin \left(\theta_{i}\right)}{\Delta} \frac{\partial}{\partial x_{0}}+\frac{\partial}{\partial \theta_{i}}$ and $\Delta=2+\sin ^{2}\left(\theta_{1}\right)+\sin ^{2}\left(\theta_{2}\right)$.

$$
\dot{z}=u_{1} \overrightarrow{H_{1}}(z)+u_{2} \overrightarrow{H_{2}}(z), \quad z=(q, p)
$$

where \vec{H}_{i} are the Hamiltonian vector fields of the Hamiltonian lifts $H_{i}(z)=$ $\left\langle p, F_{i}(q)\right\rangle, i=1,2$.

- Pontryagin Maximum Principle:
$\exists p(.) \in W^{1,1}\left([0, T] ; \mathbb{R}^{2}\right)$ and a constant $p^{0} \leq 0$ such that for a.e. $t \in[0, T]$,
- $\left(p(),. p^{0}\right) \neq(0,0)$
$-\frac{\partial H}{\partial u}=0$ where $H\left(z, p^{0}, u\right)=u_{1} H_{1}(z)+u_{2} H_{2}(z)+p^{0}\left(u_{1}^{2}+u_{2}^{2}\right)$
- Two types of extremals:
$p_{0}=-1 / 2$: normal extremals given by the true Hamiltonian

$$
H_{n}=\frac{1}{2}\left(H_{1}^{2}+H_{2}^{2}\right) .
$$

$p_{0}=0:$ abnormal extremals.

Abnormal curves. We have $H_{1}(z)=H_{2}(z)=\left\{H_{1}, H_{2}\right\}(z)=0$ and the controls are given by

$$
u_{1}\left\{\left\{H_{1}, H_{2}\right\}, H_{1}\right\}(z)+u_{2}\left\{\left\{H_{1}, H_{2}\right\}, H_{2}\right\}(z)=0 .
$$

Computations for the copepod swimmer.
Lemma. The surface $\Sigma:\left\{q ; \operatorname{det}\left(F_{1}(q), F_{2}(q),\left[F_{1}, F_{2}\right](q)\right)=0\right\}$ contained abnormal curves and is given by

- $\theta_{1 \mid 2}=0$ or π,
- $\theta_{1}=\theta_{2}$.

It is formed by the boundary of the physical domain: $\theta_{1 \mid 2} \in[0, \pi], \theta_{1} \leq \theta_{2}$, with respective controls $u_{1}=0, u_{2}=0$ or $u_{1}=u_{2}$.

Remark. A recent contribution proves that a trajectory with a corner of this type cannot be optimal.

Analysis outside the singular set Σ

$H_{3}=\left\langle p, F_{3}(q)\right\rangle$, with $F_{3}=\left[F_{1}, F_{2}\right]$ and the set $\left\{q, H_{1}, H_{2}, H_{3}\right\}$ are coordinates. (the problem is isoperimetric since p_{1} is a first integral: $\dot{p}_{1}=0$).

Equations in the Poincaré coordinates.

$$
\begin{aligned}
& \dot{H}_{1}=d H_{1}\left(\vec{H}_{n}\right)=\left\{H_{1}, H_{2}\right\} H_{2}=H_{2} H_{3}, \\
& \dot{H}_{2}=d H_{2}\left(\vec{H}_{n}\right)=\left\{H_{2}, H_{1}\right\} H_{1}=-H_{1} H_{3}, \\
& \dot{H}_{3}=d H_{3}\left(\vec{H}_{n}\right)=\left\{H_{3}, H_{1}\right\} H_{1}+\left\{H_{3}, H_{2}\right\} H_{2}
\end{aligned}
$$

with $\left\{H_{3}, H_{1}\right\}(z)=\left\langle p,\left[\left[F_{1}, F_{2}\right], F_{1}\right](q)\right\rangle, \quad\left\{H_{3}, H_{2}\right\}(z)=\left\langle p,\left[\left[F_{1}, F_{2}\right], F_{2}\right](q)\right\rangle$. At a contact point $\left\{F_{1}, F_{2}, F_{3}\right\}$ forms a frame, therefore

$$
\left[\left[F_{1}, F_{2}\right], F_{1}\right](q)=\sum_{i=1}^{3} \lambda_{i}(q) F_{i}(q), \quad\left[\left[F_{1}, F_{2}\right], F_{2}\right](q)=\sum_{i=1}^{3} \lambda_{i}^{\prime}(q) F_{i}(q),
$$

and computing one gets,

$$
\lambda_{1}=\lambda_{2}=0, \frac{\partial f}{\partial \theta_{1}}=\lambda_{3} f \text { and } \lambda_{1}^{\prime}=\lambda_{2}^{\prime}=0, \frac{\partial f}{\partial \theta_{2}}=\lambda_{3}^{\prime} f
$$

We conclude that

$$
\begin{aligned}
& \dot{H}_{1}=H_{2} H_{3}, \quad \dot{H}_{2}=-H_{1} H_{3}, \\
& \dot{H}_{3}=H_{3}\left(\lambda_{3} H_{1}+\lambda_{3}^{\prime} H_{2}\right) .
\end{aligned}
$$

Integration. Time reparameterization: $d s=H_{3} d t$

$$
\frac{d H_{1}}{d s}=H_{2}, \quad \frac{d H_{2}}{d s}=-H_{1}, \quad \frac{d H_{3}}{d s}=\lambda_{3} H_{1}+\lambda_{3}^{\prime} H_{2} .
$$

Hence $H_{1}^{\prime \prime}+H_{1}=0$ when differentiating with respect to the new time s (harmonic oscillator).
Furthermore with the approximation $\lambda_{3}, \lambda_{3}^{\prime}$ constant,

$$
\frac{d H_{3}}{d s}=A \cos (s+\rho) .
$$

We obtain, up to reparameterization, trigonometric functions for the controls.

Numerical results

Applying the PMP, we solve numerically boundary value problem:

$$
\left\{\begin{array}{l}
\dot{q}=\frac{\partial H_{n}}{\partial p}, \quad \dot{p}=-\frac{\partial H_{n}}{\partial q}, \\
x_{0}(0)=0, \quad x_{0}(2 \pi)=x_{f}, \\
\theta_{1 \mid 2}(0)=\theta_{1 \mid 2}(2 \pi), \quad p_{2 \mid 3}(0)=p_{2 \mid 3}(2 \pi)
\end{array}\right.
$$

where H_{n} is the true Hamiltonian in the normal case

$$
H_{n}=\frac{1}{2}\left(H_{1}^{2}+H_{2}^{2}\right) .
$$

Two softwares used:

- Bocop (direct method: discretization of the state and control spaces \rightarrow NLP problem) gives an initialisation for the shooting algorithm of the HamPath software.
- HamPath (indirect method: shooting algorithm, homotopic methods) compute a normal stroke and second order optimality conditions.

Exponential mapping

First conjugate time $\boldsymbol{t}_{\boldsymbol{c}}$: the exponential map

$$
\exp _{x_{0}}: \mathbb{R} \times \mathscr{C} \rightarrow M, \quad\left(t, p_{0}\right) \mapsto x\left(t, x_{0}, p_{0}\right)
$$

is not immersive at $\left(t_{c}, p_{0}\right)$.
After t_{c}, the normal geodesic ceases to be minimizing with respect to the C^{1}-topology.

Comparisons of strokes

The geometric efficiency of a stroke γ is defined by the ratio $x_{0} / L(\gamma)$,

- $L(\gamma)$ is the length of the stroke γ (independent of the time parameterization),
- x_{0} the corresponding displacement.
"Simple loops" are the only strokes without conjugate points.

Curves of efficiencies obtained by continuation on $x_{0}(T)$.

Stroke corresponding to the maximum of efficiency.

- Complex politics: classification of periodic planar curves.
- Simple loops are the only candidates.
- The abnormal triangle is not optimal due to the existence of corners.
- Concept of geometric efficiency.

Perspectives:

- Maximum Principle with state constraints.
- Compute the global optimum \rightarrow related to count the number of strokes on each energy level.
- Micro swimmer devices with Takagi.

Aim: Compute a tangent structure which approximate the tangent space of a SR manifold (which has also the SR structure).

Given a distribution $D: M \rightarrow T M$. Near $x_{0}, D\left(x_{0}\right)=\operatorname{span}\left\{F_{1}\left(x_{0}\right), \ldots, F_{m}\left(x_{0}\right)\right\}$.

- compute orders and weights of functions and vector fields \rightarrow compute privileged coordinates.
- the approximate vector fields generate a nilpotent Lie algebra with dilations.

Theorem. The nilpotent approximation at zero is

$$
\hat{F}_{1}=\frac{\partial}{\partial x_{1}}+O\left(|x|^{3}\right), \quad \hat{F}_{2}=\frac{\partial}{\partial x_{2}}+x_{1} \frac{\partial}{\partial x_{3}}+\frac{\partial}{\partial x_{4}}+x_{1}^{2} \frac{\partial}{\partial x_{5}}+O\left(|x|^{3}\right) .
$$

Remark. We have $\varphi \in \operatorname{Diff}(M)$ acting on F_{i} such that:

$$
\left(\varphi * F_{1}\right)(x)=\hat{F}_{1}(x),\left(\varphi * F_{2}\right)(x)=\hat{F}_{2}(x) .
$$

$\theta_{1}=x_{1}$ and $\theta_{2}=x_{2}$ are invariant by the φ.

Theorem. 1. The system associated to normal extremals is integrable and the solutions can be expressed as a polynomial functions of the first and the second order elliptic functions $(u, \operatorname{sn}(u), \operatorname{cn}(u), \operatorname{dn}(u), E(u))$,
2. The system associated to anormal extremals is integrable using polynomial functions.

Hamiltonian lifts.

$$
\begin{array}{ll}
H_{1}=\left\langle p, \hat{F}_{1}(x)\right\rangle=p_{1}, & H_{2}=\left\langle p, \hat{F}_{2}(x)\right\rangle=p_{2}+p_{3} x_{1}+p_{4} x_{3}+p_{5} x_{1}^{2}, \\
H_{3}=\left\langle p,\left[\hat{F}_{1}, \hat{F}_{2}\right](x)\right\rangle=-p_{3}-2 x_{1} p_{5}, & H_{4}=\left\langle p,\left[\left[\hat{F}_{1}, \hat{F}_{2}\right], \hat{F}_{1}\right](x)\right\rangle=-2 p_{5}, \\
H_{5}=\left\langle p,\left[\left[\hat{F}_{1}, \hat{F}_{2}\right], \hat{F}_{2}\right](x)\right\rangle=p_{4} . &
\end{array}
$$

SR problem.

$$
\dot{x}=\sum_{i=1}^{2} u_{i} \hat{F}_{i}, \quad \min _{u} \int_{0}^{T}\left(u_{1}^{2}+u_{2}^{2}\right) d t
$$

Pontryagin maximum principle. If $x($.$) is optimal then (x(),. p()$.$) is solution of$ the system given by the Hamiltonian:

$$
H(x, p)=\frac{1}{2}\left(H_{1}(x, p)^{2}+H_{2}(x, p)^{2}\right)
$$

We consider Poincaré coordinates

$$
\begin{aligned}
& \dot{H}_{1}=d H_{1}(\vec{H})=\left\{H_{1}, H_{2}\right\} H_{2}=\left\langle p,\left[\hat{F}_{1}, \hat{F}_{2}\right](x)\right\rangle H_{2}=H_{2} H_{3}, \\
& \dot{H}_{2}=-H_{3} H_{1}, \\
& \dot{H}_{4}=0 \quad \text { hence } H_{4}=c_{4}, \quad \dot{H}_{5}=0 \text { hence } H_{5}=H_{5} H_{5},
\end{aligned}
$$

Fixing the level energy, $H_{1}^{2}+H_{2}^{2}=1$ we set $H_{1}=\cos (\theta)$ and $H_{2}=\sin (\theta)$.

$$
\dot{H}_{1}=-\sin (\theta) \dot{\theta}=H_{2} H_{3}=\sin (\theta) H_{3} .
$$

Hence $\dot{\theta}=-H_{3}$ and

$$
\ddot{\theta}=-\left(H_{1} c_{4}+H_{2} c_{5}\right)=-c_{4} \cos (\theta)-c_{5} \sin (\theta)=-\omega^{2} \sin (\theta+\phi)
$$

where ω and ϕ are constants.
By identification, we get $\omega^{2} \sin (\phi)=c_{4}$ and $\omega^{2} \cos (\phi)=c_{5}$.
Let $\psi=\theta+\phi$, we get

$$
\frac{1}{2} \dot{\psi}^{2}-\omega^{2} \cos (\psi)=B
$$

where B is a constant.

Oscillating case. We set $u=\omega t+\varphi_{0}, k$ is the modulus of elliptic functions.

$$
\begin{aligned}
& x_{1}(u)=\frac{1}{\omega}\left[x_{1}\left(\varphi_{0}\right)-2 k \sin (\phi) \operatorname{cn}(u, k)+(-u+2 E(u, k)) \cos (\phi)\right], \\
& x_{2}(u)=\frac{1}{\omega}\left[x_{2}\left(\varphi_{0}\right)-2 k \cos (\phi) \operatorname{cn}(u, k)+(u-2 E(u, k)) \sin (\phi)\right], \\
& x_{3}(u) \ldots, x_{4}(u) \ldots, x_{5}(u) \ldots
\end{aligned}
$$

Family of strokes of period $\mathbf{4} \boldsymbol{K}(\boldsymbol{k}) / \boldsymbol{\omega}$ (dependance on initial conditions $(x(0), p(0))$.

Family of eight shape strokes

For several normal extremals parametrized by $p(0)$, we compute the first conjugate time $t_{1 c}$.

There is an affine dependance between the first conjugate time and the period of the strokes.

$$
0.3 \omega t_{1 c}-0.4<K(k)<0.5 \omega t_{1 c}-0.8
$$

Rotating case.

$$
\begin{aligned}
& x_{1}(u)=\left(-2 \cos (\phi) u+2 \cos (\phi) \mathrm{E}(u / k, k) k-2 \sin (\phi) \mathrm{dn}(u / k, k) k+\cos (\phi) u k^{2}+x_{1}\left(\varphi_{0}\right) k^{2}\right) \omega^{-1} k^{-2}, \\
& x_{2}(u)=\left(2 \sin (\phi) u-2 \sin (\phi) \mathrm{E}(u / k, k) k-2 \cos (\phi) \operatorname{dn}(u / k, k) k-\sin (\phi) u k^{2}+x_{2}\left(\varphi_{0}\right) k^{2}\right) \omega^{-1} k^{-2}, \\
& x_{3}(u) \ldots, x_{4}(u) \ldots, x_{5}(u) \ldots
\end{aligned}
$$

Family of strokes of period $2 \pi / \omega$.

Non self-intersecting and 8 solutions. There is no conjugate time $t_{1 c} \in[0,2 \pi]$.

Symmetry with respect to θ_{0}.
Lemma. If $\theta(t), \alpha(t), \bar{x}(t), \bar{y}(t)$ is an extremal solution associated to $u($.$) with$ $\theta(0)=0$, then

$$
\begin{aligned}
& x(t)=\cos \left(\alpha_{0}\right) \bar{x}(t)-\sin \left(\alpha_{0}\right) \bar{y}(t), \\
& y(t)=\sin \left(\alpha_{0}\right) \bar{x}(t)+\cos \left(\alpha_{0}\right) \bar{y}(t)
\end{aligned}
$$

is the solution associated with $u($.$) with \alpha(0)=\alpha_{0},(x(0), y(0))=\left(\bar{x}_{0}, \bar{y}_{0}\right)$ and with the same cost.

Standard second order sufficient conditions.

- local minimizer for L^{∞}-topology
- this extremum is locally unique.
\rightarrow need to set refined sufficient conditions (cf R. Vinter).

Circle as a right end-point constraint

$$
\left\{\begin{array}{l}
\dot{q}=\frac{\partial H}{\partial p}, \quad \dot{p}=-\frac{\partial H}{\partial q}, \\
x(0)=0, \quad y(0)=0, \quad x(T)^{2}+y(T)^{2}-R^{2}=0 \\
\alpha_{1 \mid 2}(T)=\alpha_{1 \mid 2}(0), \quad \theta(T)=\theta(0) \\
p_{\alpha_{1 \mid 2}}(T)=p_{\alpha_{1 \mid 2}}(0), \quad p_{\theta}(T)=p_{\theta}(0) \\
p_{x}(T) y(T)-p_{y}(T) x(T)=0
\end{array}\right.
$$

Taking the initial position angle θ_{0} as a parameter, minimizers are embed in a oneparameter family of minimizers.
\rightarrow the non-uniqueness of minimizers.

- relations between the true system and its nilpotent approximation: continuation on small strokes of the nilpotent system.
- find other homotopy classes of strokes for the true system.
- existence of smooth abnormal strokes (difference with Copepod).
- refined second order sufficient conditions.
- Bettiol, P., Bonnard, B., Giraldi, L., Martinon, P., Rouot, J.: The Purcell Threelink swimmer: some geometric and numerical aspects related to periodic optimal controls. Rad. Ser. Comp. App. 18, Variational Methods, Ed. by M. Bergounioux et al. (2016)
- Bonnard, B., Chyba, M., Rouot, J., Takagi, D.,: A Numerical Approach to the Optimal Control and Efficiency of the Copepod Swimmer (preprint)
- Purcell, E.M.: Life at low Reynolds number. Am. J. Phys. 45, 3-11 (1977)
- Takagi, D.: Swimming with stiff legs at low Reynolds number. Phys. Rev. E 92. (2015)

[^0]: Joint work with P. Bettiol, B. Bonnard and D. Takagi
 jeremy.rouot@inria.fr

