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Theorem 1.1 (Holmes, 1973)

Let C be a convex body of a Hilbert space X such that 0 ∈ intC
and bdC is a Cp+1-submanifold near x0 ∈ bdC. Let ρC be the
Minkowski functional of C. Then, there exists an open
neighborhood W of the open normal ray

Rx0(C) = {x0 + t∇ρC(x0) : t > 0},

such that PC(·) is of class Cp on W .
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Elements of the Proof:

(i) The smoothness of bdC at x0 is equivalent to the
smoothness of ρC(·) at x0 (regardless possible translations).

(ii) Furthermore, the exterior normal vector of bdC at x0 is
ν = ∇ρC(x0)/‖∇ρC(x0)‖.

(ii) The distance function dC(·) is of class C1 on X \ C.
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(iv) At each point u0 ∈ Rx0(C), we can choose two neighborhoods
U ∈ N (u0) and V ∈ N (x0) such that the function

F : U × V → X

(u, v) 7→ u− v − dC(u)
∇ρC(v)
‖∇ρC(v)‖

satisfies that F (u, v) = 0 if and only if v = PC(u).

(v) D2F (u0, x0) is invertible, and therefore, we can apply the
Implicit Function Theorem.
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Definition 2.1

For a closed set S, a point x0 ∈ S and a point u ∈ X we define:

(a) ProjS(u) = {s ∈ S : dS(u) = ‖u− s‖}. When ProjS(u) is a
singleton, we write PS(u) instead.

(b) The Proximal normal cone of S at x0 as

NP (S;x0) = {ζ ∈ X : ∃t > 0, x0 ∈ ProjS(x0 + tζ)}.
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(c) Whenever the Proximal normal cone of S at x0 has the form

NP (S;x0) = {tν : t ≥ 0},

for some ν ∈ SX , we define the open normal ray and the
λ-truncated open normal ray of S at x0 as

Rx0(S) = {x0 + tν : t > 0}
Rx0,λ(S) = {x0 + tν : t ∈ (0, λ)}.
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Definition 2.2 (Prox-Regular sets)

For r ∈ (0,+∞] and α > 0, we say that S is (r,α)-prox-regular
at x0 if for every x ∈ S ∩BX(x0, α) and every
ζ ∈ NP (S;x) ∩ BX we have that

x ∈ ProjS(x+ tζ), for every real t ∈ [0, r]. (1)

We say that S is r-prox-regular at x0 if it is (r, α)-prox-regular
at x0 for some α > 0.

We say that S is prox-regular at x0 if there exists r > 0 such
that S is r-prox-regular at x0.

We say that S is r-prox-regular (resp. prox-regular) if it is
r-prox-regular (resp. prox-regular) at every point x ∈ S.
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Definition 2.3

For r ∈ (0,+∞] and α > 0 we define the sets

RS(x0, r, α) :=
{
x+ tv : x∈S∩BX(x0,α),

t∈[0,r), v∈NP (S;x)∩BX

}
,

WS(x0, r, α) :=

{
u ∈ X : ProjS(u)∩BX(x0,α)6=∅,

dS(u)<r

}
.

In general, RS(x0, r, α) ⊃ WS(x0, r, α), but the equality doesn’t
always hold.
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Theorem 2.4 (Mazade, 2011)

The following assertions are equivalent:

(i) S is (r, α)-prox-regular at x0;

(ii) WS(x0, r, α) is open and dS is C1 on WS(x0, r, α) \ S with

∇dS(u) =
u− PS(u)
dS(u)

;

(iii) For any x ∈ S ∩B(x0, α) and ζ ∈ NP (S;x) one has

〈ζ, x′ − x〉 ≤ ‖ζ‖
2r
‖x′ − x‖2 for all x′ ∈ S.

Moreover, if S is (r, α)-prox-regular at x0, then RS(x0, r, α) and
WS(x0, r, α) coincide.
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Theorem 3.1

Let O0 ⊆ X be an open set and f : O0 ⊆ X → R be a function of
class Cp+1 near x0 ∈ X such that ∇f(x0) = 0. Assume that epi f
is r-prox-regular at (x0, f(x0)). For the constant

λ = min
{
r,
(
−2 inf

{
〈u,D2f(x0)u〉 : u ∈ BX

})−1}
there exists an open neighborhood W of R(x0,f(x0)),λ(epi f) such
that
(a) depi f is of class Cp+1 on W ;

(b) Pepi f is of class Cp on W .
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Sketch of proof

Denote S := epi f and v0 := (x0, f(x0)). We will write
u = (u1, u2) for every u ∈ X × R.

For α > 0 small enough and O :=WS(v0, r, α) ⊂ X × R we can
ensure:

1 πX(O) ⊆ O0, f is Cp+1 on πX(O).

2 dS(·) is C1 on O.

3 For x ∈ πX(O), NP (S; (x, f(x))) = {t(∇f(x),−1) : t ≥ 0}.

4 PS
[(
v +NP (S; v)

)
∩O

]
= v, for v ∈ S ∩O.

5 Rv0,λ(S) ⊂ O.
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Fix u0 ∈ Rv0,λ(S) and choose U ∈ NX(u0) and V ∈ N (v0) with
U, V ⊆ O. Define

F : U × V → X × R
(u, v) 7→ u− v − dS(u)ϕ(v),

where ϕ(v) = (∇f(v1),−1)
‖(∇f(v1),−1)‖ for all v ∈ V .

If we choose correctly U and V , we can assure that

F (u, v) = 0 ⇐⇒ v = PS(u).
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It is not hard to see that

D2F (u0, v0) = −(idX×R+dS(u)Dϕ(v0)),

and, using that ∇f(x0) = 0, we can show by simple computation
that

Dϕ(v0)h = (D2f(x0)h1, 0), ∀h ∈ X × R.

Using that dS(u0) < λ, we prove that D2F (u0, v0) is bijective, and
so we can apply the Implicit Function Theorem (IFT):
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IFT: dS is of class C1 on U , and so F is of class C1 on U × V .
Then, there exist U1 ∈ N (u0) and V1 ∈ N (v0) and a mapping
φ : U1 → V1 such that

(i) φ is of class C1;

(ii) For each u′ ∈ U1, F (u′, φ(u′)) = 0;

(iii) For each (u′, v′) ∈ U1 × V1, F (u′, v′) = 0 =⇒ v = φ(u′).

We can see that φ = PS on U1 and so PS is of class C1 and dS is
of class C2.
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We can apply recursively this argument as follows:

dS is C2 in U1 =⇒ F is C2 on U1 × V1
=⇒

IFT
∃U2 ∈ N (u0), PS is C2 on U2

...

=⇒ F is Cp on Up−1 × Vp−1
=⇒

IFT
∃Up ∈ N (u0), PS is Cp on Up

=⇒ dS is Cp+1 on Up.

We cannot go further, since ϕ(·) is only Cp, and so is F .

The proof is finished considering W as the union of the
neighborhoods Up obtained for each u0 ∈ Rv0,λ(S).
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Theorem 3.2

Let S ⊆ X be a closed body near x0 ∈ bdS. Assume that there
exist r ∈ (0,+∞] and α > 0 such that BX(x0, α) ∩ bdS is a
Cp+1-submanifold and that S is r-prox-regular at x0.

Then there exists a neighborhood V of Rx0,r(S) such that

dS is of class Cp+1 on V ;

PS is of class Cp on V .

Furthermore, if the set S is (α, r)-prox-regular at x0, then

dS is of class Cp+1 on WS(x0, r, α) \ S;

PS is of class Cp on WS(x0, r, α) \ S.
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Sketch of proof:

We will prove only the second part, which entails the first one.

We can regard (near x0) the set S as the epigraph of a Cp+1

function f : O0 ⊆ Z → R, where Z := Tx0(bdS) (which is an
hyperplane). In particular, we have that ∇f(z0) = 0, where
z0 := πZ(x0).

Considering X = Z × R and noting that x0 = (z0, f(z0)), we
can choose O0 small enough such that epi f is r-prox-regular
at (z0, f(z0)).
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Sketch of proof:

We can prove, thanks to the r-prox-regularity, that

inf
{
〈z,D2f(z0)z〉 : z ∈ BZ

}
≥ −1

r
,

and so, the constant λ in Theorem 3.1 is greater than r/2.

Using Theorem 3.1, dS is of class Cp+1 on WS(x0, r/2, α) \ S.

Now, take x ∈ BX(x0, α)∩ bdS and u ∈ Rx,r(S) with dS(u) ≥ r
2 .

We can choose α′ > 0 small enough such that BX(x, α
′) is

included in BX(x0, α) and S is (r, α′)-prox-regular at x.

We get that dS(·) is of class Cp+1 in WS(S, r/2, α
′) \ S and so:
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Sketch of proof:

Since u is arbitrary, we conclude that dS(·) is of class Cp+1 at each
element of the set⋃

x∈BX(x0,α)

Rx,r(S) = RS(x0, r, α) \ S.

The proof is complete, recalling that RS(x0, r, α) =WS(x0, r, α).
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Some comments:

We proved the same result of Theorem 3.2 when S is itself a
Cp+1-submanifold, instead of a nonconvex body. We were
based on the work of Poly and Raby [6].

With L. Thibault, we proved the converse of Theorem 3.2,
adding an extra hypothesis. We followed the ideas of
Fitzpatrick and Phelps [2]. This is an ongoing work.

There still many open questions regarding this subject.
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Thank you for your attention.
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