Smoothness of the Metric Projection onto Nonconvex Bodies in Hilbert Spaces

David Salas Videla¹

IMAG - Université de Montpellier

Journées SMAI-MODE, Toulouse, March 23, 2016

2 Preliminaries

- ◆ □ ▶ → 個 ▶ → 注 ▶ → 注 → のへぐ

Theorem 1.1 (Holmes, 1973)

Let C be a convex body of a Hilbert space X such that $0 \in \text{int } C$ and $\operatorname{bd} C$ is a C^{p+1} -submanifold near $x_0 \in \operatorname{bd} C$. Let ρ_C be the Minkowski functional of C. Then, there exists an open neighborhood W of the open normal ray

$$R_{x_0}(C) = \{x_0 + t\nabla \rho_C(x_0) : t > 0\},\$$

such that $P_C(\cdot)$ is of class \mathcal{C}^p on W.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Elements of the Proof:

- (i) The smoothness of bd C at x_0 is equivalent to the smoothness of $\rho_C(\cdot)$ at x_0 (regardless possible translations).
- (ii) Furthermore, the exterior normal vector of $\operatorname{bd} C$ at x_0 is $\nu = \nabla \rho_C(x_0) / \| \nabla \rho_C(x_0) \|.$

(ii) The distance function $d_C(\cdot)$ is of class \mathcal{C}^1 on $X \setminus C$.

Elements of the Proof:

- (i) The smoothness of bd C at x_0 is equivalent to the smoothness of $\rho_C(\cdot)$ at x_0 (regardless possible translations).
- (ii) Furthermore, the exterior normal vector of $\operatorname{bd} C$ at x_0 is $\nu = \nabla \rho_C(x_0) / \| \nabla \rho_C(x_0) \|.$

(ii) The distance function $d_C(\cdot)$ is of class \mathcal{C}^1 on $X \setminus C$.

Elements of the Proof:

- (i) The smoothness of bdC at x_0 is equivalent to the smoothness of $\rho_C(\cdot)$ at x_0 (regardless possible translations).
- (ii) Furthermore, the exterior normal vector of $\operatorname{bd} C$ at x_0 is $\nu = \nabla \rho_C(x_0) / \| \nabla \rho_C(x_0) \|.$

(ii) The distance function $d_C(\cdot)$ is of class \mathcal{C}^1 on $X\setminus C.$

Elements of the Proof:

- (i) The smoothness of bd C at x_0 is equivalent to the smoothness of $\rho_C(\cdot)$ at x_0 (regardless possible translations).
- (ii) Furthermore, the exterior normal vector of $\operatorname{bd} C$ at x_0 is $\nu = \nabla \rho_C(x_0) / \| \nabla \rho_C(x_0) \|.$

(ii) The distance function $d_C(\cdot)$ is of class \mathcal{C}^1 on $X \setminus C$.

(iv) At each point $u_0 \in R_{x_0}(C)$, we can choose two neighborhoods $U \in \mathcal{N}(u_0)$ and $V \in \mathcal{N}(x_0)$ such that the function

 $F: U \times V \to X$

$$(u,v) \mapsto u - v - d_C(u) \frac{\nabla \rho_C(v)}{\|\nabla \rho_C(v)\|}$$

satisfies that F(u, v) = 0 if and only if $v = P_C(u)$.

(v) $D_2F(u_0, x_0)$ is invertible, and therefore, we can apply the Implicit Function Theorem.

(iv) At each point $u_0 \in R_{x_0}(C)$, we can choose two neighborhoods $U \in \mathcal{N}(u_0)$ and $V \in \mathcal{N}(x_0)$ such that the function

 $F: U \times V \to X$

$$(u,v) \mapsto u - v - d_C(u) \frac{\nabla \rho_C(v)}{\|\nabla \rho_C(v)\|}$$

satisfies that F(u, v) = 0 if and only if $v = P_C(u)$.

(v) $D_2F(u_0, x_0)$ is invertible, and therefore, we can apply the Implicit Function Theorem.

(iv) At each point $u_0 \in R_{x_0}(C)$, we can choose two neighborhoods $U \in \mathcal{N}(u_0)$ and $V \in \mathcal{N}(x_0)$ such that the function

 $F: U \times V \to X$

$$(u,v) \mapsto u - v - d_C(u) \frac{\nabla \rho_C(v)}{\|\nabla \rho_C(v)\|}$$

satisfies that F(u, v) = 0 if and only if $v = P_C(u)$.

(v) $D_2F(u_0, x_0)$ is invertible, and therefore, we can apply the Implicit Function Theorem.

Definition 2.1

For a closed set S, a point $x_0 \in S$ and a point $u \in X$ we define:

(a) $\operatorname{Proj}_{S}(u) = \{s \in S : d_{S}(u) = ||u - s||\}$. When $\operatorname{Proj}_{S}(u)$ is a singleton, we write $P_{S}(u)$ instead.

(b) The Proximal normal cone of S at x_0 as

 $N^{P}(S; x_{0}) = \{ \zeta \in X : \exists t > 0, x_{0} \in \operatorname{Proj}_{S}(x_{0} + t\zeta) \}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(c) Whenever the Proximal normal cone of S at x_0 has the form

$$N^P(S; x_0) = \{t\nu : t \ge 0\},\$$

for some $\nu \in \mathbb{S}_X$, we define the **open normal ray** and the λ -truncated open normal ray of S at x_0 as

$$R_{x_0}(S) = \{x_0 + t\nu : t > 0\}$$

$$R_{x_0,\lambda}(S) = \{x_0 + t\nu : t \in (0,\lambda)\}.$$

Definition 2.2 (Prox-Regular sets)

For $r \in (0, +\infty]$ and $\alpha > 0$, we say that S is (r, α) -prox-regular at x_0 if for every $x \in S \cap B_X(x_0, \alpha)$ and every $\zeta \in N^P(S; x) \cap \mathbb{B}_X$ we have that

 $x \in \operatorname{Proj}_{S}(x+t\zeta), \quad \text{for every real } t \in [0,r].$ (1)

We say that S is **r**-prox-regular at x_0 if it is (r, α) -prox-regular at x_0 for some $\alpha > 0$.

We say that S is prox-regular at x_0 if there exists r > 0 such that S is r-prox-regular at x_0 .

Definition 2.2 (Prox-Regular sets)

For $r \in (0, +\infty]$ and $\alpha > 0$, we say that S is (r, α) -prox-regular at x_0 if for every $x \in S \cap B_X(x_0, \alpha)$ and every $\zeta \in N^P(S; x) \cap \mathbb{B}_X$ we have that

 $x \in \operatorname{Proj}_{S}(x+t\zeta), \quad \text{for every real } t \in [0,r].$ (1)

We say that S is r-prox-regular at x_0 if it is (r, α) -prox-regular at x_0 for some $\alpha > 0$.

We say that S is prox-regular at x_0 if there exists r > 0 such that S is r-prox-regular at x_0 .

Definition 2.2 (Prox-Regular sets)

For $r \in (0, +\infty]$ and $\alpha > 0$, we say that S is (r, α) -prox-regular at x_0 if for every $x \in S \cap B_X(x_0, \alpha)$ and every $\zeta \in N^P(S; x) \cap \mathbb{B}_X$ we have that

 $x \in \operatorname{Proj}_{S}(x+t\zeta), \quad \text{for every real } t \in [0,r].$ (1)

We say that S is *r*-prox-regular at x_0 if it is (r, α) -prox-regular at x_0 for some $\alpha > 0$.

We say that S is prox-regular at x_0 if there exists r > 0 such that S is r-prox-regular at x_0 .

Definition 2.2 (Prox-Regular sets)

For $r \in (0, +\infty]$ and $\alpha > 0$, we say that S is (r, α) -prox-regular at x_0 if for every $x \in S \cap B_X(x_0, \alpha)$ and every $\zeta \in N^P(S; x) \cap \mathbb{B}_X$ we have that

 $x \in \operatorname{Proj}_{S}(x+t\zeta), \quad \text{for every real } t \in [0,r].$ (1)

We say that S is r-prox-regular at x_0 if it is (r, α) -prox-regular at x_0 for some $\alpha > 0$.

We say that S is prox-regular at x_0 if there exists r > 0 such that S is r-prox-regular at x_0 .

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Definition 2.3

For $r\in(0,+\infty]$ and $\alpha>0$ we define the sets

$$\mathcal{R}_{S}(x_{0}, r, \alpha) := \left\{ x + tv : \frac{x \in S \cap B_{X}(x_{0}, \alpha),}{t \in [0, r), \ v \in N^{P}(S; x) \cap \mathbb{B}_{X}} \right\},$$
$$\mathcal{W}_{S}(x_{0}, r, \alpha) := \left\{ u \in X : \frac{\operatorname{Proj}_{S}(u) \cap B_{X}(x_{0}, \alpha) \neq \emptyset}{d_{S}(u) < r} \right\}.$$

In general, $\mathcal{R}_S(x_0, r, \alpha) \supset \mathcal{W}_S(x_0, r, \alpha)$, but the equality doesn't always hold.

Theorem 2.4 (Mazade, 2011)

The following assertions are equivalent:

(i) S is (r, α) -prox-regular at x_0 ; (ii) $\mathcal{W}_S(x_0, r, \alpha)$ is open and d_S is \mathcal{C}^1 on $\mathcal{W}_S(x_0, r, \alpha) \setminus S$ with

$$\nabla d_S(u) = \frac{u - P_S(u)}{d_S(u)};$$

(iii) For any $x \in S \cap B(x_0, \alpha)$ and $\zeta \in N^P(S; x)$ one has

$$\langle \zeta, x' - x \rangle \le \frac{\|\zeta\|}{2r} \|x' - x\|^2$$
 for all $x' \in S$.

Moreover, if S is (r, α) -prox-regular at x_0 , then $\mathcal{R}_S(x_0, r, \alpha)$ and $\mathcal{W}_S(x_0, r, \alpha)$ coincide.

Theorem 2.4 (Mazade, 2011)

The following assertions are equivalent:

(i) S is (r, α) -prox-regular at x_0 ;

(ii) $\mathcal{W}_S(x_0,r,\alpha)$ is open and d_S is \mathcal{C}^1 on $\mathcal{W}_S(x_0,r,\alpha)\setminus S$ with

$$\nabla d_S(u) = \frac{u - P_S(u)}{d_S(u)};$$

(iii) For any $x \in S \cap B(x_0, lpha)$ and $\zeta \in N^P(S; x)$ one has

$$\langle \zeta, x' - x \rangle \le \frac{\|\zeta\|}{2r} \|x' - x\|^2$$
 for all $x' \in S$.

Moreover, if S is (r, α) -prox-regular at x_0 , then $\mathcal{R}_S(x_0, r, \alpha)$ and $\mathcal{W}_S(x_0, r, \alpha)$ coincide.

・ロト・雪ト・雪ト・雪・ 今日・

Theorem 2.4 (Mazade<u>, 2011)</u>

The following assertions are equivalent:

(i) S is (r, α)-prox-regular at x₀;
(ii) W_S(x₀, r, α) is open and d_S is C¹ on W_S(x₀, r, α) \ S with

$$\nabla d_S(u) = \frac{u - P_S(u)}{d_S(u)};$$

(iii) For any $x \in S \cap B(x_0, \alpha)$ and $\zeta \in N^P(S; x)$ one has

$$\langle \zeta, x' - x \rangle \le \frac{\|\zeta\|}{2r} \|x' - x\|^2$$
 for all $x' \in S$.

Moreover, if S is (r, α) -prox-regular at x_0 , then $\mathcal{R}_S(x_0, r, \alpha)$ and $\mathcal{W}_S(x_0, r, \alpha)$ coincide.

Theorem 2.4 (Mazade, 2011)

The following assertions are equivalent:

(i) S is (r, α)-prox-regular at x₀;
(ii) W_S(x₀, r, α) is open and d_S is C¹ on W_S(x₀, r, α) \ S with

$$\nabla d_S(u) = \frac{u - P_S(u)}{d_S(u)};$$

(iii) For any $x \in S \cap B(x_0, \alpha)$ and $\zeta \in N^P(S; x)$ one has

$$\langle \zeta, x' - x \rangle \leq \frac{\|\zeta\|}{2r} \|x' - x\|^2 \quad \text{for all } x' \in S.$$

Moreover, if S is (r, α) -prox-regular at x_0 , then $\mathcal{R}_S(x_0, r, \alpha)$ and $\mathcal{W}_S(x_0, r, \alpha)$ coincide.

Theorem 2.4 (Mazade, 2011)

The following assertions are equivalent:

- (i) S is (r, α) -prox-regular at x_0 ;
- (ii) $\mathcal{W}_S(x_0,r,\alpha)$ is open and d_S is \mathcal{C}^1 on $\mathcal{W}_S(x_0,r,\alpha)\setminus S$ with

$$\nabla d_S(u) = \frac{u - P_S(u)}{d_S(u)};$$

(iii) For any $x \in S \cap B(x_0, \alpha)$ and $\zeta \in N^P(S; x)$ one has

$$\langle \zeta, x' - x \rangle \leq \frac{\|\zeta\|}{2r} \|x' - x\|^2 \quad \text{for all } x' \in S.$$

Moreover, if S is (r, α) -prox-regular at x_0 , then $\mathcal{R}_S(x_0, r, \alpha)$ and $\mathcal{W}_S(x_0, r, \alpha)$ coincide.

2 Preliminaries

(4日) (個) (目) (目) (目) (の)

Theorem <u>3.1</u>

Let $O_0 \subseteq X$ be an open set and $f: O_0 \subseteq X \to \mathbb{R}$ be a function of class \mathcal{C}^{p+1} near $x_0 \in X$ such that $\nabla f(x_0) = 0$. Assume that $\overline{\operatorname{epi} f}$ is r-prox-regular at $(x_0, f(x_0))$. For the constant

$$\lambda = \min\left\{r, \left(-2\inf\left\{\langle u, D^2 f(x_0)u\rangle : u \in \mathbb{B}_X\right\}\right)^{-1}\right\}$$

there exists an open neighborhood W of $R_{(x_0,f(x_0)),\lambda}(\operatorname{epi} f)$ such that

(a)
$$d_{\text{epi} f}$$
 is of class \mathcal{C}^{p+1} on W ;

(b) $P_{\operatorname{epi} f}$ is of class \mathcal{C}^p on W.

Denote $S := \overline{\operatorname{epi} f}$ and $v_0 := (x_0, f(x_0))$. We will write $u = (u_1, u_2)$ for every $u \in X \times \mathbb{R}$.

For $\alpha > 0$ small enough and $O := \mathcal{W}_S(v_0, r, \alpha) \subset X \times \mathbb{R}$ we can ensure:

•
$$\pi_X(O) \subseteq O_0$$
, f is \mathcal{C}^{p+1} on $\pi_X(O)$.

- 2 $d_S(\cdot)$ is \mathcal{C}^1 on O.
- **③** For $x \in \pi_X(O)$, $N^P(S; (x, f(x))) = \{t(\nabla f(x), -1) : t \ge 0\}$.
- $P_S\left[\left(v+N^P(S;v)\right)\cap O\right]=v, \text{ for } v\in S\cap O.$

 $I R_{v_0,\lambda}(S) \subset O.$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへの

Denote
$$S := \overline{\operatorname{epi} f}$$
 and $v_0 := (x_0, f(x_0))$. We will write $u = (u_1, u_2)$ for every $u \in X \times \mathbb{R}$.

For $\alpha > 0$ small enough and $O := \mathcal{W}_S(v_0, r, \alpha) \subset X \times \mathbb{R}$ we can ensure:

$$\ \, \mathbf{0} \ \, \pi_X(O) \subseteq O_0, \ f \text{ is } \mathcal{C}^{p+1} \text{ on } \pi_X(O).$$

2 $d_S(\cdot)$ is \mathcal{C}^1 on O.

- **③** For $x \in \pi_X(O)$, $N^P(S; (x, f(x))) = \{t(∇f(x), -1) : t ≥ 0\}$.
- $P_S\left[\left(v+N^P(S;v)\right)\cap O\right]=v, \text{ for } v\in S\cap O.$

 $I R_{v_0,\lambda}(S) \subset O.$

▲ロト ▲母 ト ▲目 ト ▲目 ト ○日 ● のへの

Denote
$$S := \overline{\operatorname{epi} f}$$
 and $v_0 := (x_0, f(x_0))$. We will write $u = (u_1, u_2)$ for every $u \in X \times \mathbb{R}$.

For $\alpha > 0$ small enough and $O := \mathcal{W}_S(v_0, r, \alpha) \subset X \times \mathbb{R}$ we can ensure:

•
$$\pi_X(O) \subseteq O_0$$
, f is \mathcal{C}^{p+1} on $\pi_X(O)$.

2 $d_S(\cdot)$ is \mathcal{C}^1 on O.

- **③** For $x \in \pi_X(O)$, $N^P(S; (x, f(x))) = \{t(∇f(x), -1) : t ≥ 0\}$.
- $P_S\left[\left(v+N^P(S;v)\right)\cap O\right]=v, \text{ for } v\in S\cap O.$

 $I R_{v_0,\lambda}(S) \subset O.$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへの

Denote
$$S := \overline{\operatorname{epi} f}$$
 and $v_0 := (x_0, f(x_0))$. We will write $u = (u_1, u_2)$ for every $u \in X \times \mathbb{R}$.

For $\alpha > 0$ small enough and $O := \mathcal{W}_S(v_0, r, \alpha) \subset X \times \mathbb{R}$ we can ensure:

•
$$\pi_X(O) \subseteq O_0$$
, f is \mathcal{C}^{p+1} on $\pi_X(O)$.

 \mathbf{O} $d_S(\cdot)$ is \mathcal{C}^1 on O.

③ For $x \in \pi_X(O)$, $N^P(S; (x, f(x))) = \{t(\nabla f(x), -1) : t \ge 0\}$.

•
$$P_S\left[\left(v+N^P(S;v)\right)\cap O\right]=v, \text{ for } v\in S\cap O.$$

 $I R_{v_0,\lambda}(S) \subset O.$

Denote
$$S := \overline{\operatorname{epi} f}$$
 and $v_0 := (x_0, f(x_0))$. We will write $u = (u_1, u_2)$ for every $u \in X \times \mathbb{R}$.

For $\alpha > 0$ small enough and $O := \mathcal{W}_S(v_0, r, \alpha) \subset X \times \mathbb{R}$ we can ensure:

•
$$\pi_X(O) \subseteq O_0$$
, f is \mathcal{C}^{p+1} on $\pi_X(O)$.

$$\mathbf{O}$$
 $d_S(\cdot)$ is \mathcal{C}^1 on O .

 $\hbox{ o For } x \in \pi_X(O), \ N^P(S;(x,f(x))) = \{t(\nabla f(x),-1) \ : \ t \geq 0\}.$

•
$$P_S\left[\left(v+N^P(S;v)\right)\cap O\right]=v, \text{ for } v\in S\cap O.$$

 $I R_{v_0,\lambda}(S) \subset O$

Denote
$$S := \overline{\operatorname{epi} f}$$
 and $v_0 := (x_0, f(x_0))$. We will write $u = (u_1, u_2)$ for every $u \in X \times \mathbb{R}$.

For $\alpha>0$ small enough and $O:=\mathcal{W}_S(v_0,r,\alpha)\subset X\times\mathbb{R}$ we can ensure:

•
$$\pi_X(O) \subseteq O_0$$
, f is \mathcal{C}^{p+1} on $\pi_X(O)$.

$$d_S(\cdot)$$
 is \mathcal{C}^1 on O .

3 For
$$x \in \pi_X(O)$$
, $N^P(S; (x, f(x))) = \{t(\nabla f(x), -1) : t \ge 0\}$.

•
$$P_S\left[\left(v+N^P(S;v)\right)\cap O\right]=v, \text{ for } v\in S\cap O.$$

$I R_{v_0,\lambda}(S) \subset O$

Denote
$$S := \overline{\operatorname{epi} f}$$
 and $v_0 := (x_0, f(x_0))$. We will write $u = (u_1, u_2)$ for every $u \in X \times \mathbb{R}$.

For $\alpha>0$ small enough and $O:=\mathcal{W}_S(v_0,r,\alpha)\subset X\times\mathbb{R}$ we can ensure:

2
$$d_S(\cdot)$$
 is \mathcal{C}^1 on O .

③ For
$$x \in \pi_X(O)$$
, $N^P(S; (x, f(x))) = \{t(\nabla f(x), -1) : t \ge 0\}$.

•
$$P_S\left[\left(v+N^P(S;v)\right)\cap O\right]=v, \text{ for } v\in S\cap O.$$

$$R_{v_0,\lambda}(S) \subset O.$$

Fix $u_0 \in R_{v_0,\lambda}(S)$ and choose $U \in \mathcal{N}_X(u_0)$ and $V \in \mathcal{N}(v_0)$ with $U, V \subseteq O$. Define

$$F: U \times V \to X \times \mathbb{R}$$
$$(u, v) \mapsto u - v - d_S(u)\varphi(v),$$

where $\varphi(v) = \frac{(\nabla f(v_1), -1)}{\|(\nabla f(v_1), -1)\|}$ for all $v \in V$. If we choose correctly U and V, we can assure that

$$F(u,v) = 0 \iff v = P_S(u).$$
Fix $u_0 \in R_{v_0,\lambda}(S)$ and choose $U \in \mathcal{N}_X(u_0)$ and $V \in \mathcal{N}(v_0)$ with $U, V \subseteq O$. Define

$$F: U \times V \to X \times \mathbb{R}$$
$$(u, v) \mapsto u - v - d_S(u)\varphi(v),$$

where $\varphi(v) = \frac{(\nabla f(v_1), -1)}{\|(\nabla f(v_1), -1)\|}$ for all $v \in V$.

If we choose correctly U and V, we can assure that

 $F(u,v) = 0 \iff v = P_S(u).$

Fix $u_0 \in R_{v_0,\lambda}(S)$ and choose $U \in \mathcal{N}_X(u_0)$ and $V \in \mathcal{N}(v_0)$ with $U, V \subseteq O$. Define

$$F: U \times V \to X \times \mathbb{R}$$
$$(u, v) \mapsto u - v - d_S(u)\varphi(v),$$

where $\varphi(v) = \frac{(\nabla f(v_1), -1)}{\|(\nabla f(v_1), -1)\|}$ for all $v \in V$. If we choose correctly U and V, we can assure that

$$F(u,v) = 0 \iff v = P_S(u).$$

Fix $u_0 \in R_{v_0,\lambda}(S)$ and choose $U \in \mathcal{N}_X(u_0)$ and $V \in \mathcal{N}(v_0)$ with $U, V \subseteq O$. Define

$$F: U \times V \to X \times \mathbb{R}$$
$$(u, v) \mapsto u - v - d_S(u)\varphi(v),$$

where $\varphi(v) = \frac{(\nabla f(v_1), -1)}{\|(\nabla f(v_1), -1)\|}$ for all $v \in V$. If we choose correctly U and V, we can assure that

 $F(u,v) = 0 \iff v = P_S(u).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

It is not hard to see that

$$D_2F(u_0, v_0) = -(\mathrm{id}_{X \times \mathbb{R}} + d_S(u)D\varphi(v_0)),$$

and, using that $\nabla f(x_0)=0,$ we can show by simple computation that

$$D\varphi(v_0)h = (D^2 f(x_0)h_1, 0), \ \forall h \in X \times \mathbb{R}.$$

Using that $d_S(u_0) < \lambda$, we prove that $D_2F(u_0, v_0)$ is bijective, and so we can apply the **Implicit Function Theorem (IFT)**:

IFT: d_S is of class \mathcal{C}^1 on U, and so F is of class \mathcal{C}^1 on $U \times V$. Then, there exist $U_1 \in \mathcal{N}(u_0)$ and $V_1 \in \mathcal{N}(v_0)$ and a mapping $\phi: U_1 \to V_1$ such that

IFT: d_S is of class \mathcal{C}^1 on U, and so F is of class \mathcal{C}^1 on $U \times V$. Then, there exist $U_1 \in \mathcal{N}(u_0)$ and $V_1 \in \mathcal{N}(v_0)$ and a mapping $\phi: U_1 \to V_1$ such that (i) ϕ is of class C^1 ;

IFT: d_S is of class \mathcal{C}^1 on U, and so F is of class \mathcal{C}^1 on $U \times V$. Then, there exist $U_1 \in \mathcal{N}(u_0)$ and $V_1 \in \mathcal{N}(v_0)$ and a mapping $\phi: U_1 \to V_1$ such that (i) ϕ is of class C^1 ; (ii) For each $u' \in U_1$, $F(u', \phi(u')) = 0$;

IFT: d_S is of class \mathcal{C}^1 on U, and so F is of class \mathcal{C}^1 on $U \times V$. Then, there exist $U_1 \in \mathcal{N}(u_0)$ and $V_1 \in \mathcal{N}(v_0)$ and a mapping $\phi: U_1 \to V_1$ such that (i) ϕ is of class C^1 ; (ii) For each $u' \in U_1$, $F(u', \phi(u')) = 0$; (iii) For each $(u', v') \in U_1 \times V_1$, $F(u', v') = 0 \implies v = \phi(u')$.

IFT: d_S is of class \mathcal{C}^1 on U, and so F is of class \mathcal{C}^1 on $U \times V$. Then, there exist $U_1 \in \mathcal{N}(u_0)$ and $V_1 \in \mathcal{N}(v_0)$ and a mapping $\phi: U_1 \to V_1$ such that (i) ϕ is of class C^1 ; (ii) For each $u' \in U_1$, $F(u', \phi(u')) = 0$; (iii) For each $(u', v') \in U_1 \times V_1$, $F(u', v') = 0 \implies v = \phi(u')$. We can see that $\phi = P_S$ on U_1 and so P_S is of class \mathcal{C}^1 and d_S is of class \mathcal{C}^2 .

IFT: d_S is of class \mathcal{C}^1 on U, and so F is of class \mathcal{C}^1 on $U \times V$. Then, there exist $U_1 \in \mathcal{N}(u_0)$ and $V_1 \in \mathcal{N}(v_0)$ and a mapping $\phi: U_1 \to V_1$ such that (i) ϕ is of class C^1 ; (ii) For each $u' \in U_1$, $F(u', \phi(u')) = 0$; (iii) For each $(u', v') \in U_1 \times V_1$, $F(u', v') = 0 \implies v = \phi(u')$. We can see that $\phi = P_S$ on U_1 and so P_S is of class \mathcal{C}^1 and d_S is of class \mathcal{C}^2 .

We can apply recursively this argument as follows:

is C^2 in $U_1 \implies F$ is C^2 on $U_1 \times V_1$ $\implies \exists U_2 \in \mathcal{N}(u_0), \ P_S$ is C^2 on U_2 \vdots $\implies F$ is C^p on $U_{p-1} \times V_{p-1}$ $\implies \exists U_p \in \mathcal{N}(u_0), \ P_S$ is C^p on U_p $\implies d_S$ is C^{p+1} on U_p .

We cannot go further, since $\varphi(\cdot)$ is only \mathcal{C}^p , and so is F. The proof is finished considering W as the union of the neighborhoods U_p obtained for each $u_0 \in R_{v_0,\lambda}(S)$.

・ロト・西ト・西ト・日・ 日・ シック

We can apply recursively this argument as follows:

 $\begin{array}{l} d_S \text{ is } \mathcal{C}^2 \text{ in } U_1 \implies F \text{ is } \mathcal{C}^2 \text{ on } U_1 \times V_1 \\ \underset{\text{IFT}}{\Longrightarrow} \exists U_2 \in \mathcal{N}(u_0), \ P_S \text{ is } \mathcal{C}^2 \text{ on } U_2 \\ \vdots \\ \underset{\text{IFT}}{\Longrightarrow} F \text{ is } \mathcal{C}^p \text{ on } U_{p-1} \times V_{p-1} \\ \underset{\text{IFT}}{\Longrightarrow} \exists U_p \in \mathcal{N}(u_0), \ P_S \text{ is } \mathcal{C}^p \text{ on } U_p \\ \underset{\text{IFT}}{\Longrightarrow} d_S \text{ is } \mathcal{C}^{p+1} \text{ on } U_p. \end{array}$

We cannot go further, since $\varphi(\cdot)$ is only \mathcal{C}^p , and so is F. The proof is finished considering W as the union of the neighborhoods U_p obtained for each $u_0 \in R_{v_0,\lambda}(S)$.

・ロト・西ト・山田・山田・山市・山口・

We can apply recursively this argument as follows:

 $\begin{array}{l} d_S \text{ is } \mathcal{C}^2 \text{ in } U_1 \implies F \text{ is } \mathcal{C}^2 \text{ on } U_1 \times V_1 \\ \underset{\text{\tiny IFT}}{\Longrightarrow} \exists U_2 \in \mathcal{N}(u_0), \ P_S \text{ is } \mathcal{C}^2 \text{ on } U_2 \\ \vdots \\ \underset{\text{\tiny IFT}}{\Longrightarrow} F \text{ is } \mathcal{C}^p \text{ on } U_{p-1} \times V_{p-1} \\ \underset{\text{\tiny IFT}}{\Longrightarrow} \exists U_p \in \mathcal{N}(u_0), \ P_S \text{ is } \mathcal{C}^p \text{ on } U_p \\ \underset{\text{\tiny IFT}}{\Longrightarrow} d_S \text{ is } \mathcal{C}^{p+1} \text{ on } U_p. \end{array}$

We cannot go further, since $\varphi(\cdot)$ is only \mathcal{C}^p , and so is F. The proof is finished considering W as the union of the neighborhoods U_p obtained for each $u_0 \in R_{v_0,\lambda}(S)$.

・ロト・雪・・雪・・雪・・ 白・ シック

イロト 不得 トイヨト イヨト

э

We can apply recursively this argument as follows:

$$\begin{array}{rcl} \mathcal{U}_S \text{ is } \mathcal{C}^2 \text{ in } U_1 \implies F \text{ is } \mathcal{C}^2 \text{ on } U_1 \times V_1 \\ & \underset{\mathsf{IFT}}{\Longrightarrow} & \exists U_2 \in \mathcal{N}(u_0), \ P_S \text{ is } \mathcal{C}^2 \text{ on } U_2 \\ & \vdots \\ & \underset{\mathsf{IFT}}{\Longrightarrow} & F \text{ is } \mathcal{C}^p \text{ on } U_{p-1} \times V_{p-1} \\ & \underset{\mathsf{IFT}}{\Longrightarrow} & \exists U_p \in \mathcal{N}(u_0), \ P_S \text{ is } \mathcal{C}^p \text{ on } U_p \\ & \underset{\mathsf{IFT}}{\Longrightarrow} & d_S \text{ is } \mathcal{C}^{p+1} \text{ on } U_p. \end{array}$$

We cannot go further, since $\varphi(\cdot)$ is only \mathcal{C}^p , and so is F. The proof is finished considering W as the union of the neighborhoods U_p obtained for each $u_0 \in R_{v_0,\lambda}(S)$. a

イロト 不得 トイヨト イヨト

э

We can apply recursively this argument as follows:

$$\begin{array}{l} \mathcal{U}_S \text{ is } \mathcal{C}^2 \text{ in } U_1 \implies F \text{ is } \mathcal{C}^2 \text{ on } U_1 \times V_1 \\ \underset{\mathsf{IFT}}{\Longrightarrow} \exists U_2 \in \mathcal{N}(u_0), \ P_S \text{ is } \mathcal{C}^2 \text{ on } U_2 \\ \vdots \\ \underset{\mathsf{IFT}}{\Longrightarrow} F \text{ is } \mathcal{C}^p \text{ on } U_{p-1} \times V_{p-1} \\ \underset{\mathsf{IFT}}{\Longrightarrow} \exists U_p \in \mathcal{N}(u_0), \ P_S \text{ is } \mathcal{C}^p \text{ on } U_p \\ \underset{\mathsf{IFT}}{\Longrightarrow} d_S \text{ is } \mathcal{C}^{p+1} \text{ on } U_p. \end{array}$$

We cannot go further, since $\varphi(\cdot)$ is only \mathcal{C}^p , and so is F. The proof is finished considering W as the union of the neighborhoods U_p obtained for each $u_0 \in R_{v_0,\lambda}(S)$.

イロト 不得 トイヨト イヨト

э

We can apply recursively this argument as follows:

$$\begin{split} l_S \text{ is } \mathcal{C}^2 \text{ in } U_1 \implies F \text{ is } \mathcal{C}^2 \text{ on } U_1 \times V_1 \\ \implies & \exists U_2 \in \mathcal{N}(u_0), \ P_S \text{ is } \mathcal{C}^2 \text{ on } U_2 \\ \vdots \\ \implies & F \text{ is } \mathcal{C}^p \text{ on } U_{p-1} \times V_{p-1} \\ \implies & \exists U_p \in \mathcal{N}(u_0), \ P_S \text{ is } \mathcal{C}^p \text{ on } U_p \\ \implies & d_S \text{ is } \mathcal{C}^{p+1} \text{ on } U_p. \end{split}$$

We cannot go further, since $\varphi(\cdot)$ is only \mathcal{C}^p , and so is F. The proof is finished considering W as the union of the neighborhoods U_p obtained for each $u_0 \in R_{v_0,\lambda}(S)$.

イロト 不得 トイヨト イヨト

э

We can apply recursively this argument as follows:

$$\begin{array}{rcl} l_S \text{ is } \mathcal{C}^2 \text{ in } U_1 \implies F \text{ is } \mathcal{C}^2 \text{ on } U_1 \times V_1 \\ & \underset{\mathsf{IFT}}{\Longrightarrow} & \exists U_2 \in \mathcal{N}(u_0), \ P_S \text{ is } \mathcal{C}^2 \text{ on } U_2 \\ & \vdots \\ & \underset{\mathsf{IFT}}{\Longrightarrow} & F \text{ is } \mathcal{C}^p \text{ on } U_{p-1} \times V_{p-1} \\ & \underset{\mathsf{IFT}}{\Longrightarrow} & \exists U_p \in \mathcal{N}(u_0), \ P_S \text{ is } \mathcal{C}^p \text{ on } U_p \\ & \underset{\mathsf{IFT}}{\Longrightarrow} & d_S \text{ is } \mathcal{C}^{p+1} \text{ on } U_p. \end{array}$$

We cannot go further, since $\varphi(\cdot)$ is only \mathcal{C}^p , and so is F. The proof is finished considering W as the union of the neighborhoods U_p obtained for each $u_0 \in R_{v_0,\lambda}(S)$.

- 日本 - 4 日本 - 4 日本 - 日本

We can apply recursively this argument as follows:

$$\begin{split} l_S \text{ is } \mathcal{C}^2 \text{ in } U_1 \implies F \text{ is } \mathcal{C}^2 \text{ on } U_1 \times V_1 \\ \implies \exists U_2 \in \mathcal{N}(u_0), \ P_S \text{ is } \mathcal{C}^2 \text{ on } U_2 \\ \vdots \\ \implies F \text{ is } \mathcal{C}^p \text{ on } U_{p-1} \times V_{p-1} \\ \implies \exists U_p \in \mathcal{N}(u_0), \ P_S \text{ is } \mathcal{C}^p \text{ on } U_p \\ \implies d_S \text{ is } \mathcal{C}^{p+1} \text{ on } U_p. \end{split}$$

We cannot go further, since $\varphi(\cdot)$ is only \mathcal{C}^p , and so is F.

The proof is finished considering W as the union of the neighborhoods U_p obtained for each $u_0 \in R_{v_0,\lambda}(S)$.

- 日本 - 4 日本 - 4 日本 - 日本

We can apply recursively this argument as follows:

$$\begin{split} l_S \text{ is } \mathcal{C}^2 \text{ in } U_1 \implies F \text{ is } \mathcal{C}^2 \text{ on } U_1 \times V_1 \\ \implies \exists U_2 \in \mathcal{N}(u_0), \ P_S \text{ is } \mathcal{C}^2 \text{ on } U_2 \\ \vdots \\ \implies F \text{ is } \mathcal{C}^p \text{ on } U_{p-1} \times V_{p-1} \\ \implies \exists U_p \in \mathcal{N}(u_0), \ P_S \text{ is } \mathcal{C}^p \text{ on } U_p \\ \implies d_S \text{ is } \mathcal{C}^{p+1} \text{ on } U_p. \end{split}$$

We cannot go further, since $\varphi(\cdot)$ is only \mathcal{C}^p , and so is F.

The proof is finished considering W as the union of the neighborhoods U_p obtained for each $u_0 \in R_{v_0,\lambda}(S)$.

We can apply recursively this argument as follows:

$$\begin{array}{rcl} \mathcal{U}_S \text{ is } \mathcal{C}^2 \text{ in } U_1 \implies F \text{ is } \mathcal{C}^2 \text{ on } U_1 \times V_1 \\ & \underset{\mathsf{IFT}}{\Longrightarrow} & \exists U_2 \in \mathcal{N}(u_0), \ P_S \text{ is } \mathcal{C}^2 \text{ on } U_2 \\ & \vdots \\ & \underset{\mathsf{IFT}}{\Longrightarrow} & F \text{ is } \mathcal{C}^p \text{ on } U_{p-1} \times V_{p-1} \\ & \underset{\mathsf{IFT}}{\Longrightarrow} & \exists U_p \in \mathcal{N}(u_0), \ P_S \text{ is } \mathcal{C}^p \text{ on } U_p \\ & \underset{\mathsf{IFT}}{\Longrightarrow} & d_S \text{ is } \mathcal{C}^{p+1} \text{ on } U_p. \end{array}$$

We cannot go further, since $\varphi(\cdot)$ is only \mathcal{C}^p , and so is F.

The proof is finished considering W as the union of the neighborhoods U_p obtained for each $u_0 \in R_{v_0,\lambda}(S)$.

Theorem 3.2

Let $S \subseteq X$ be a closed body near $x_0 \in \operatorname{bd} S$. Assume that there exist $r \in (0, +\infty]$ and $\alpha > 0$ such that $B_X(x_0, \alpha) \cap \operatorname{bd} S$ is a \mathcal{C}^{p+1} -submanifold and that S is r-prox-regular at x_0 .

Then there exists a neighborhood V of $R_{x_0,r}(S)$ such that

- d_S is of class \mathcal{C}^{p+1} on V;
- P_S is of class \mathcal{C}^p on V.

Furthermore, if the set S is (α, r) -prox-regular at x_0 , then

- d_S is of class \mathcal{C}^{p+1} on $\mathcal{W}_S(x_0, r, \alpha) \setminus S$;
- P_S is of class \mathcal{C}^p on $\mathcal{W}_S(x_0, r, \alpha) \setminus S$.

Sketch of proof:

We will prove only the second part, which entails the first one.

- We can regard (near x_0) the set S as the epigraph of a \mathcal{C}^{p+1} function $f: O_0 \subseteq Z \to \mathbb{R}$, where $Z := T_{x_0}(\operatorname{bd} S)$ (which is an hyperplane). In particular, we have that $\nabla f(z_0) = 0$, where $z_0 := \pi_Z(x_0)$.
- Considering $X = Z \times \mathbb{R}$ and noting that $x_0 = (z_0, f(z_0))$, we can choose O_0 small enough such that $\overline{\operatorname{epi} f}$ is *r*-prox-regular at $(z_0, f(z_0))$.

Sketch of proof:

We will prove only the second part, which entails the first one.

- We can regard (near x_0) the set S as the epigraph of a \mathcal{C}^{p+1} function $f: O_0 \subseteq Z \to \mathbb{R}$, where $Z := T_{x_0}(\operatorname{bd} S)$ (which is an hyperplane). In particular, we have that $\nabla f(z_0) = 0$, where $z_0 := \pi_Z(x_0)$.
- Considering $X = Z \times \mathbb{R}$ and noting that $x_0 = (z_0, f(z_0))$, we can choose O_0 small enough such that epi f is r-prox-regular at $(z_0, f(z_0))$.

Sketch of proof:

We will prove only the second part, which entails the first one.

- We can regard (near x_0) the set S as the epigraph of a \mathcal{C}^{p+1} function $f: O_0 \subseteq Z \to \mathbb{R}$, where $Z := T_{x_0}(\operatorname{bd} S)$ (which is an hyperplane). In particular, we have that $\nabla f(z_0) = 0$, where $z_0 := \pi_Z(x_0)$.
- Considering $X = Z \times \mathbb{R}$ and noting that $x_0 = (z_0, f(z_0))$, we can choose O_0 small enough such that $\overline{\operatorname{epi} f}$ is *r*-prox-regular at $(z_0, f(z_0))$.

Sketch of proof:

 $\bullet\,$ We can prove, thanks to the $r\mbox{-}{\rm prox-regularity},$ that

$$\inf\left\{\langle z, D^2 f(z_0) z\rangle : z \in \mathbb{B}_Z\right\} \ge -\frac{1}{r},$$

and so, the constant λ in Theorem 3.1 is greater than r/2.

• Using Theorem 3.1, d_S is of class \mathcal{C}^{p+1} on $\mathcal{W}_S(x_0, r/2, \alpha) \setminus S$.

Now, take $x \in B_X(x_0, \alpha) \cap \operatorname{bd} S$ and $u \in R_{x,r}(S)$ with $d_S(u) \geq \frac{r}{2}$. We can choose $\alpha' > 0$ small enough such that $B_X(x, \alpha')$ is included in $B_X(x_0, \alpha)$ and S is (r, α') -prox-regular at x.

We get that $d_S(\cdot)$ is of class \mathcal{C}^{p+1} in $\mathcal{W}_S(S, r/2, \alpha') \setminus S$ and so:

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

Sketch of proof:

 $\bullet\,$ We can prove, thanks to the $r\mbox{-}{\rm prox-regularity},$ that

$$\inf\left\{\langle z, D^2 f(z_0) z\rangle : z \in \mathbb{B}_Z\right\} \ge -\frac{1}{r},$$

and so, the constant λ in Theorem 3.1 is greater than r/2.

• Using Theorem 3.1, d_S is of class \mathcal{C}^{p+1} on $\mathcal{W}_S(x_0, r/2, \alpha) \setminus S$.

Now, take $x \in B_X(x_0, \alpha) \cap \operatorname{bd} S$ and $u \in R_{x,r}(S)$ with $d_S(u) \geq \frac{r}{2}$. We can choose $\alpha' > 0$ small enough such that $B_X(x, \alpha')$ is included in $B_X(x_0, \alpha)$ and S is (r, α') -prox-regular at x.

We get that $d_S(\cdot)$ is of class \mathcal{C}^{p+1} in $\mathcal{W}_S(S, r/2, \alpha') \setminus S$ and so:

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

Sketch of proof:

 $\bullet\,$ We can prove, thanks to the $r\mbox{-}{\rm prox-regularity},$ that

$$\inf\left\{\langle z, D^2 f(z_0) z\rangle : z \in \mathbb{B}_Z\right\} \ge -\frac{1}{r},$$

and so, the constant λ in Theorem 3.1 is greater than r/2.

• Using Theorem 3.1, d_S is of class \mathcal{C}^{p+1} on $\mathcal{W}_S(x_0, r/2, \alpha) \setminus S$.

Now, take $x \in B_X(x_0, \alpha) \cap \operatorname{bd} S$ and $u \in R_{x,r}(S)$ with $d_S(u) \geq \frac{r}{2}$. We can choose $\alpha' > 0$ small enough such that $B_X(x, \alpha')$ is included in $B_X(x_0, \alpha)$ and S is (r, α') -prox-regular at x.

We get that $d_S(\cdot)$ is of class \mathcal{C}^{p+1} in $\mathcal{W}_S(S, r/2, \alpha') \setminus S$ and so:

Sketch of proof:

 ${\ensuremath{\, \bullet }}$ We can prove, thanks to the $r\mbox{-}{\ensuremath{\rm prox-regularity}},$ that

$$\inf\left\{\langle z, D^2 f(z_0) z\rangle : z \in \mathbb{B}_Z\right\} \ge -\frac{1}{r},$$

and so, the constant λ in Theorem 3.1 is greater than r/2.

• Using Theorem 3.1, d_S is of class \mathcal{C}^{p+1} on $\mathcal{W}_S(x_0, r/2, \alpha) \setminus S$.

Now, take $x \in B_X(x_0, \alpha) \cap \operatorname{bd} S$ and $u \in R_{x,r}(S)$ with $d_S(u) \geq \frac{r}{2}$. We can choose $\alpha' > 0$ small enough such that $B_X(x, \alpha')$ is included in $B_X(x_0, \alpha)$ and S is (r, α') -prox-regular at x.

We get that $d_S(\cdot)$ is of class \mathcal{C}^{p+1} in $\mathcal{W}_S(S, r/2, \alpha') \setminus S$ and so:

Sketch of proof:

 ${\ensuremath{\, \bullet }}$ We can prove, thanks to the $r\mbox{-}{\ensuremath{\rm prox-regularity}},$ that

$$\inf\left\{\langle z, D^2 f(z_0) z\rangle : z \in \mathbb{B}_Z\right\} \ge -\frac{1}{r},$$

and so, the constant λ in Theorem 3.1 is greater than r/2.

• Using Theorem 3.1, d_S is of class \mathcal{C}^{p+1} on $\mathcal{W}_S(x_0, r/2, \alpha) \setminus S$.

Now, take $x \in B_X(x_0, \alpha) \cap \operatorname{bd} S$ and $u \in R_{x,r}(S)$ with $d_S(u) \geq \frac{r}{2}$. We can choose $\alpha' > 0$ small enough such that $B_X(x, \alpha')$ is included in $B_X(x_0, \alpha)$ and S is (r, α') -prox-regular at x.

We get that $d_S(\cdot)$ is of class \mathcal{C}^{p+1} in $\mathcal{W}_S(S, r/2, \alpha') \setminus S$ and so:

・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ うへぐ

Sketch of proof:

Since u is arbitrary, we conclude that $d_S(\cdot)$ is of class \mathcal{C}^{p+1} at each element of the set

$$\bigcup_{x \in B_X(x_0,\alpha)} R_{x,r}(S) = \mathcal{R}_S(x_0, r, \alpha) \setminus S.$$

The proof is complete, recalling that $\mathcal{R}_S(x_0, r, \alpha) = \mathcal{W}_S(x_0, r, \alpha)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Sketch of proof:

Since u is arbitrary, we conclude that $d_S(\cdot)$ is of class \mathcal{C}^{p+1} at each element of the set

$$\bigcup_{x \in B_X(x_0,\alpha)} R_{x,r}(S) = \mathcal{R}_S(x_0, r, \alpha) \setminus S.$$

The proof is complete, recalling that $\mathcal{R}_S(x_0, r, \alpha) = \mathcal{W}_S(x_0, r, \alpha)$.

Some comments:

- We proved the same result of Theorem 3.2 when S is itself a C^{p+1}-submanifold, instead of a nonconvex body. We were based on the work of Poly and Raby [6].
- With L. Thibault, we proved the converse of Theorem 3.2, adding an extra hypothesis. We followed the ideas of Fitzpatrick and Phelps [2]. This is an ongoing work.
- There still many open questions regarding this subject.
Some comments:

- We proved the same result of Theorem 3.2 when S is itself a C^{p+1}-submanifold, instead of a nonconvex body. We were based on the work of Poly and Raby [6].
- With L. Thibault, we proved the converse of Theorem 3.2, adding an extra hypothesis. We followed the ideas of Fitzpatrick and Phelps [2]. This is an ongoing work.

• There still many open questions regarding this subject.

Some comments:

- We proved the same result of Theorem 3.2 when S is itself a C^{p+1}-submanifold, instead of a nonconvex body. We were based on the work of Poly and Raby [6].
- With L. Thibault, we proved the converse of Theorem 3.2, adding an extra hypothesis. We followed the ideas of Fitzpatrick and Phelps [2]. This is an ongoing work.
- There still many open questions regarding this subject.

- G. Colombo, L. Thibault: *Handbook of nonconvex Analysis* and Applications (chapter): *Prox-regular sets and Applications*, International Press, Somerville, Mass, 2010.
- S. Fitzpatrick, R. R. Phelps: *Differentiability of the metric projection in Hilbert space*, Transactions of the American Mathematical Society, 1982.
- R.B. Holmes: Smoothness of certain metric projection on Hilbert space, Transactions of the American Mathematical Society, 1973.
- M. Mazade: Ensembles localement prox-réguliers et inéquations variationelles, PhD. Thesis, Université Montpellier II, France, 2011.

- R.A. Poliquin, R. T. Rockafellar, L. Thibault: Local Differentiability of Distance Functions, Transactions of the American Mathematical Society, 2000.
- J.-B. Poly, G. Raby: *Fonction distance et singularités*, Bulletin des Sciences Mathématiques (2me Série), 1984.

<□ > < @ > < E > < E > E のQ @

Thank you for your attention.