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Theorem 1.1 (Holmes, 1973)

Let C' be a convex body of a Hilbert space X such that 0 € int C
and bd C' is a CPT1-submanifold near xo € bd C. Let pc be the
Minkowski functional of C'. Then, there exists an open
neighborhood W of the open normal ray

Ry (C) = {zo + tVpc(ao) = t >0},

such that Pc(-) is of class CP on W.
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Elements of the Proof:

(i) The smoothness of bd C' at xg is equivalent to the
smoothness of pco(-) at g (regardless possible translations).

(it) Furthermore, the exterior normal vector of bd C' at xg is
v = Vpc(xo)/[[Vpc(xo)l.-

(ii) The distance function d¢(-) is of class C* on X \ C.
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(iv) At each point ug € R,,(C), we can choose two neighborhoods
U € N(up) and V € N(xg) such that the function

F:UxV—->X
Vpc(v)
IVpc(v)]]

satisfies that F'(u,v) = 0 if and only if v = Po(u).

(u,v) = u—v—de(u)



Motivation Preliminaries

(iv) At each point ug € R,,(C), we can choose two neighborhoods
U € N(up) and V € N(xg) such that the function

F:UxV =X
Vpc(v)
Ve )]

satisfies that F'(u,v) = 0 if and only if v = Po(u).

(u,v) = u—v—de(u)

(v) DaF(up,xo) is invertible, and therefore, we can apply the
Implicit Function Theorem.
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Preliminaries

Definition 2.1

For a closed set S, a point xq € S and a point u € X we define:

(a) Projg(u) ={s €S : ds(u) = ||lu—s|}. When Projg(u) is a
singleton, we write Ps(u) instead.

(b) The Proximal normal cone of S at z as

NP(S;z9) ={¢Ce€ X : 3t >0, 29 € Projg(zo + t¢)}.
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(c) Whenever the Proximal normal cone of S at zg has the form
NP(S;z0) = {tv : t >0},

for some v € Sx, we define the open normal ray and the
A-truncated open normal ray of S at zg as

Ry (S) ={zo+tv : t >0}
Ry 2 (S) ={xo+tv : te (0,\)}.
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Definition 2.2 (Prox-Regular sets)

For r € (0,400] and a > 0, we say that S is (r, a)-prox-regular
at x if for every x € SN Bx(zg,a) and every
¢ € NP(S;x) "Bx we have that

x € Projg(x 4+ t¢), for every realt € [0, 7]. (1)
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Definition 2.2 (Prox-Regular sets)

For r € (0,400] and a > 0, we say that S is (r, a)-prox-regular
at x if for every x € SN Bx(zg,a) and every
¢ € NP(S;x) "Bx we have that

x € Projg(x 4+ t¢), for every realt € [0, 7]. (1)

We say that S is r-prox-regular at x¢ if it is (r, a)-prox-regular
at xg for some o > 0.

We say that S is prox-regular at xq if there exists r > 0 such
that S is r-prox-regular at xy.

We say that S is r-prox-regular (resp. prox-regular) if it is
r-prox-regular (resp. prox-regular) at every point x € S.
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Definition 2.3

For r € (0,400] and o > 0 we define the sets

RS($O7T7 a) = {x+tv . zESnBX(:EO,a)z } ,
tE[O,r), ’UENP(S,Z')H]BX

Ws(zo, 7, o) := {u cX : Projs(“)ﬂBX(xovo‘#wv} .
ds(u)<r

In general, Rg(xo,r, ) D Ws(xo,r, «), but the equality doesn't
always hold.




Preliminaries

Theorem 2.4 (Mazade, 2011)

The following assertions are equivalent:




Preliminaries

Theorem 2.4 (Mazade, 2011)

The following assertions are equivalent:

(i) S is (r,o)-prox-regular at xo;




Preliminaries

Theorem 2.4 (Mazade, 2011)

The following assertions are equivalent:
(i) S is (r,o)-prox-regular at xo;

(i) Ws(zo,7, ) is open and dg is C' on Ws(zg,r, )\ S with

Vds(u) = w




Preliminaries

Theorem 2.4 (Mazade, 2011)

The following assertions are equivalent:
(i) S is (r,o)-prox-regular at xo;

(i) Ws(zo,7, ) is open and dg is C' on Ws(zg,r, )\ S with

Vds(u) = w

(i) For any x € SN B(xg, ) and ( € NP(S;z) one has

(¢, 2 —z) < HZCHHJU’ —z||? forallz’ €S.
r




Preliminaries

Theorem 2.4 (Mazade, 2011)

The following assertions are equivalent:
(i) S is (r,o)-prox-regular at xo;

(i) Ws(zo,7, ) is open and dg is C' on Ws(zg,r, )\ S with

Vds(u) = w

(i) For any x € SN B(xg, ) and ( € NP(S;z) one has

(¢, 2 —z) < HZCHHJU’ —z||? forallz’ €S.
r

Moreover, if S is (r, a)-prox-regular at xq, then Rs(xo,r, ) and
Ws(xo, 7, o) coincide.
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Main Results

Theorem 3.1

Let Oy C X be an open set and f : Oy C X — R be a function of
class CP™! near xo € X such that V f(z¢) = 0. Assume that epi f
is r-prox-regular at (xo, f(xo)). For the constant

)\ = min {r, (=2inf {(u, D*f(zo)u) : u € BX})_I}

there exists an open neighborhood W' of R, t(x0)),x(€Pi f) such
that

(2) depi f is of class CPT1 on W,
(b) Pepiy is of class CP on W.




Sketch of proof

Denote S :=epi f and vy := (xo, f(z0)). We will write
u = (u1,ug) for every u € X x R.
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Sketch of proof

Denote S :=epi f and vy := (xo, f(z0)). We will write
u = (u1,ug) for every u € X x R.

For @ > 0 small enough and O := Wg(vg, 7, &) C X x R we can
ensure:
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@ For z € mx(0), NP(S; (z, f(2))) = {t(Vf(),-1) : t >0},
Q@ Ps[(v+NP(S;v))N0O] =v, forve SNO.

@ R, A(S) C O.
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It is not hard to see that
Dy F(ug,vp) = —(idxxr +ds(u)Dep(v)),

and, using that V f(zp) = 0, we can show by simple computation
that
Do(vg)h = (D?f(x0)h1,0), Vh € X x R.

Using that dg(ug) < A, we prove that Do F(ug,vo) is bijective, and
so we can apply the Implicit Function Theorem (IFT):
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We can apply recursively this argument as follows:

dgisC?inlU; = FisC?’onU; xV;
=> Uz € N(w), Psis C? on Uy

= FisC’onUp_1 xVp_q
— 3, € N(up), Ps is CP on U,

is Pt
= dg is CP"" on U),.

We cannot go further, since ¢(+) is only C?, and so is F.

The proof is finished considering W as the union of the
neighborhoods U), obtained for each ug € Ry, A(S5).
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Theorem 3.2

Let S C X be a closed body near xg € bd S. Assume that there
exist € (0,+00] and o > 0 such that Bx(zo,) Nbd S is a
CPtl_submanifold and that S is r-prox-regular at x.

Then there exists a neighborhood V' of Ry, ,(S) such that
@ dg is of class CP*! on V;
@ Ps isof classCP on V.

Furthermore, if the set S is («, r)-prox-regular at x(, then
e dg is of class CP™t on Wg(xg,m, ) \ S;

@ Pg is of class CP on Ws(xg,7, ) \ S.
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Sketch of proof:

We will prove only the second part, which entails the first one.

@ We can regard (near ) the set S as the epigraph of a CP*!
function f: Og € Z — R, where Z :=T,,(bd S) (which is an
hyperplane). In particular, we have that V f(z9) = 0, where
20 1= 7z (x0).

e Considering X = Z x R and noting that z¢ = (20, f(20)), we
can choose Oy small enough such that epi f is r-prox-regular

at (zo, f(20))-
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and so, the constant X in Theorem 3.1 is greater than r/2.




Sketch of proof:

@ We can prove, thanks to the r-prox-regularity, that
1

inf{(z,DQf(zo)z> : z€Bgz} > —-,
"

and so, the constant A in Theorem 3.1 is greater than r/2.




Sketch of proof:

@ We can prove, thanks to the r-prox-regularity, that
1

inf{(z,DQf(zo)z> : z€Bgz} > —-,
"

and so, the constant A in Theorem 3.1 is greater than r/2.

e Using Theorem 3.1, dg is of class CP*! on Wg(xg,7/2,a)\ S.




Sketch of proof:

@ We can prove, thanks to the r-prox-regularity, that
1

inf{(z,DQf(zo)z> : z€Bgz} > —-,
"

and so, the constant X in Theorem 3.1 is greater than r/2.
e Using Theorem 3.1, dg is of class CPT! on Wg(z0,7/2,a) \ S.

\
Now, take # € By (xo,a) Nbd S and u € R, ,(S) with dg(u) > 5.
We can choose o/ > 0 small enough such that Bx(z, ) is
included in Bx (zo,«) and S is (r, a’)-prox-regular at z.




Sketch of proof:

@ We can prove, thanks to the r-prox-regularity, that
1

inf{(z,DQf(zo)z> : z€Bgz} > —-,
"

and so, the constant X in Theorem 3.1 is greater than r/2.
e Using Theorem 3.1, dg is of class CPT! on Wg(z0,7/2,a) \ S.

\
Now, take # € By (xo,a) Nbd S and u € R, ,(S) with dg(u) > 5.
We can choose o/ > 0 small enough such that Bx(z, ) is
included in Bx (zo,«) and S is (r, a’)-prox-regular at z.

We get that dg(-) is of class CP1 in Wg(S,7/2,a') \ S and so:







Main Results

bdS




Main Results

bdS




Main Results

bdS




Main Results

Sketch of proof:

Since u is arbitrary, we conclude that dg(-) is of class CP*! at each
element of the set
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Sketch of proof:

Since u is arbitrary, we conclude that dg(-) is of class CP*! at each
element of the set

U Rer(S) = Rs(zo,m,0) \ S.

rEBx (xo’a)

The proof is complete, recalling that Rg(zo,r, o) = Wg(zo, 7, ).
O
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Some comments:

@ We proved the same result of Theorem 3.2 when S is itself a
CPt1_submanifold, instead of a nonconvex body. We were
based on the work of Poly and Raby [6].

@ With L. Thibault, we proved the converse of Theorem 3.2,
adding an extra hypothesis. We followed the ideas of
Fitzpatrick and Phelps [2]. This is an ongoing work.

@ There still many open questions regarding this subject.




Main Results

[ G. Colombo, L. Thibault: Handbook of nonconvex Analysis
and Applications (chapter): Prox-regular sets and
Applications, International Press, Somerville, Mass, 2010.

[§ S. Fitzpatrick, R. R. Phelps: Differentiability of the metric
projection in Hilbert space, Transactions of the American
Mathematical Society, 1982.

[§ R.B. Holmes: Smoothness of certain metric projection on
Hilbert space, Transactions of the American Mathematical
Society, 1973.

[ M. Mazade: Ensembles localement prox-réguliers et
inéquations variationelles, PhD. Thesis, Université Montpellier
I, France, 2011.



Main Results

G RA. Poliquin, R. T. Rockafellar, L. Thibault: Local
Differentiability of Distance Functions, Transactions of the
American Mathematical Society, 2000.

[§ J.-B. Poly, G. Raby: Fonction distance et singularités, Bulletin
des Sciences Mathématiques (2me Série), 1984.



Main Results

Thank you for your attention.
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