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Problem

Deliver a payload to a given
altitude while minimizing the
fuel load of the launcher.

Some parameters are subject to
uncertainties and we need the
mission to succeed with a 90%
probability.
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Framework

General formulation



Compute
min
x∈X

J(x)

Subject to
P
[
G(x , ω) ≥ 0

]
≥ p

x ∈ X ⊆ Rn (optimization variables)
ω ∈ Ω ⊆ Rm (random parameters)
p ∈ [0, 1] (probability threshold)
J : Rn → R (cost)
G : Rn × Rm → R (constraint)
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Main theoretic result

Definition: quasi-concave function
A function f (z), z ∈ Rn is said to be quasi-concave if, for any
z1, z2 ∈ Rn and λ ∈ (0, 1), the following inequality holds

f
(
λz1 + (1− λ)z2

)
≥ min

{
f (z1), f (z2)

}

Theorem (A. Prékopa, 1995)

If G(x , y) is a quasi-concave function of the variables x ∈ Rn,
y ∈ Rm and ω ∈ Rm is a random variable with logconcave
probability distribution, then the function

P(x) := P
[
G(x , ω) ≥ 0

]
x ∈ Rn

is logconcave.
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Approach

Problem:
for every x in X , the distribution of G(x , ω) is unknown.

Solution:
approximate it and translate the stochastic optimization
problem into a deterministic one:

1− P
[
G(x , ω) ≥ 0

]
=
∫ 0

−∞
fG(x)(ξ)dξ ≈

∫ 0

−∞
f̂G(x)(ξ)dξ

where fG is the probability density function of G and f̂G its
approximation.
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Approach

Kernel Density Estimation
Let {s1, s2, . . . , sn} be a sample of size m from the random variable
s. A Kernel Density Estimator for f is the function

f̂ (σ) := 1
mh

m∑
i=1

K
(
σ − si

h

)

K : R→ R (kernel)
h > 0 (bandwidth)

There isn’t an explicit formula for the error between f and f̂ 1.

1S. J. Sheather. “Density Estimation”. In: Statistical Science 19(4)
(2004), pp. 588–597.
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Model
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Vertical ascent of a single stage launcher

State equation:
ṙ(t, u) = v(t, u) (altitude)
v̇(t, u) = T

m(t,u)u(t)− g (speed)
ṁ(t, u) = −T

ve
u(t) (mass)

g is the gravitational acceleration;
T is the engine thrust;
ve is the fuel speed.

Control:

u ∈ U := {u : [0,+∞)→ [0, 1] ⊂ R | u is measurable}
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Vertical ascent of a single stage launcher

Initial conditions:
r(0, u) = 0 (altitude)
v(0, u) = 0 (speed)
m(0, u) = (1 + k)me + mp (mass)

k is the stage index;
me is the fuel mass;
mp is the payload.
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Deterministic optimization problem

Problem 1



Compute
max
u∈U

m(tf, u)

Subject to
r(tf, u) ≥ rf

tf is the fixed final time;
rf is the target final altitude.
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Solution
Optimal cost:

m(tf, u∗) ≈ 4.614
Optimal control:
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Stochastic optimization problem
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Stochastic optimization problem

Problem 2a



Compute
max
u∈U

E [m(tf, u)]

Subject to
P
[
Rf(T , u) ≥ rf

]
≥ p

T ∼ U
([

T (1−∆T ),T (1 + ∆T )
])

p is the probability threshold.
Constraint:
For a given realization of T

Rf(T , u) := r(tf, u)
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Reformulation

For every u ∈ U we have

P
[
Rf(T , u) ≥ rf

]
= 1−

∫ rf

0
fu(σ)dσ =: 1− Fu(rf)

E [m(tf, u)] =
∫ tf

0
m(0, u)− E[T ]

ve
u(t)dt =: m(tf, u)

Fu(rf) is the probability distribution function of Rf,
parameterized by u.



Introduction Model Stochastic optimization problem Results Conclusions

Reformulation

Approximation of fu:
choose n ∈ N draw a sample from T

{T1,T2, . . . ,Tn}

choose a kernel K , a bandwidth h and define the Kernel
Density Estimator of fme as

f̂u(σ) := 1
nh

n∑
i=1

K
(
σ − Rf(Ti , u)

h

)



Introduction Model Stochastic optimization problem Results Conclusions

Deterministic optimization problem

Problem 2b



Compute
max
u∈U

m(tf, u)

Subject to
F̂u(rf) ≤ 1− p

F̂u(rf) :=
∫ rf

0
f̂u(σ)dσ ≈

∫ rf

0
fu(σ)dσ =: Fu(rf)
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Results
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Choice of parameters

Parameter Value
T 150
∆T 0.1
g 9.8
mp 0.5
rf 0.2
p 0.9

kernel:

K (y) = e−
y2
2

√
2π

bandwidth:

h = 1.06n−
1
5σn

σn is the sample standard
deviation.
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Optimal solution
For a uniform sample from T of size n = 500 we obtain
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allowing us to deliver the payload with a probability of 90.887%
even if the engine thrust T is subject to random oscillations.



Introduction Model Stochastic optimization problem Results Conclusions

Optimal solution
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Convergence of approximated solutions
The problem is solved for all n ∈ {10, 20, . . . , 500}.
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Convergence of approximated solutions

Let un be the optimal control obtained with a sample of size n. In
order to estimate P

[
Rf(T , un) ≥ rf

]
we evaluate Rf(T , un) at 105

random values of T , then define the success rate

Rn :=
#
{
Ti s.t. Rf(Ti , un) ≥ rf

}
105

and use the fact that

Rn ≈ P
[
Rf(T , un) ≥ rf

]
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Convergence of approximated solutions

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 50  100  150  200  250  300  350  400  450  500

R

n

Success rate

Success rate as a function of n.



Introduction Model Stochastic optimization problem Results Conclusions

Conclusions



Introduction Model Stochastic optimization problem Results Conclusions

Conclusions

Deterministic problem:
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Bang-bang control.

Stochastic problem:
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Continuous control.
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Conclusions

Pros:
Efficiency: small samples
lead to good approximations
of f . Better results can be
obtained with different h
and K .

Cons:
Lack of theory: no explicit
formula for the error
between f and f̂ . No
general criterion for
choosing h and K .

Future work:
More random variables: use realistic models with an
increasing number of uncertain parameters.
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