Chance constrained optimization of a space launcher

Achille Sassi¹ Jean-Baptiste Caillau², Max Cerf³, Emmanuel Trélat⁴, Hasnaa Zidani¹

¹ENSTA ParisTech ³Airbus Defence and Space ²Université de Bourgogne ⁴Université Pierre et Marie Curie

Journées SMAI-MODE - Toulouse, 25/03/2016

Introduction	Model	Stochastic optimization problem		Conclusions
00000	0000	0000	000000	

Introduction

Introduction	Model	Stochastic optimization problem	Conclusions
00000			

Problem

Deliver a payload to a given altitude while **minimizing** the fuel load of the launcher.

Some parameters are subject to **uncertainties** and we need the mission to succeed with a **90% probability**.

Introduction	Model	Stochastic optimization problem	Conclusions
0000			

Framework

General formulation

 $\begin{cases} \mathsf{Compute} \\ \min_{x \in X} J(x) \\ \mathsf{Subject to} \\ \mathbb{P}[G(x, \omega) \ge 0] \ge p \end{cases}$

 $egin{aligned} & x \in X \subseteq \mathbb{R}^n & (ext{opti} \ & \omega \in \Omega \subseteq \mathbb{R}^m & (ext{range} \ & p \in [0,1] & (ext{prod} \ & J : \mathbb{R}^n o \mathbb{R} & \\ & G : \mathbb{R}^n imes \mathbb{R}^m o \mathbb{R} & \end{aligned}$

(optimization variables) (random parameters) (probability threshold) (cost) (constraint)

Introduction	Model	Stochastic optimization problem	Conclusions
00000			

Main theoretic result

Definition: quasi-concave function

A function f(z), $z \in \mathbb{R}^n$ is said to be quasi-concave if, for any $z_1, z_2 \in \mathbb{R}^n$ and $\lambda \in (0, 1)$, the following inequality holds

$$f(\lambda z_1 + (1 - \lambda)z_2) \geq \min \{f(z_1), f(z_2)\}$$

Theorem (A. Prékopa, 1995)

If G(x, y) is a quasi-concave function of the variables $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$ and $\omega \in \mathbb{R}^m$ is a random variable with logconcave probability distribution, then the function

$$P(x) := \mathbb{P}[G(x,\omega) \ge 0] \quad x \in \mathbb{R}^n$$

is logconcave.

Introduction ○00●0	Model 0000	Stochastic optimization problem	Results 000000	Conclusions
Approach				

Problem:

for every x in X, the **distribution** of $G(x, \omega)$ is **unknown**. Solution:

approximate it and translate the stochastic optimization problem into a deterministic one:

$$1 - \mathbb{P}[G(x,\omega) \ge 0] = \int_{-\infty}^{0} f_{G(x)}(\xi) d\xi \approx \int_{-\infty}^{0} \hat{f}_{G(x)}(\xi) d\xi$$

where f_G is the **probability density function** of G and \hat{f}_G its approximation.

Introduction ○000●	Model 0000	Stochastic optimization problem	Results 000000	Conclusions
Approach				

Kernel Density Estimation

Let $\{s_1, s_2, \ldots, s_n\}$ be a sample of size *m* from the random variable *s*. A **Kernel Density Estimator** for *f* is the function

$$\hat{f}(\sigma) := rac{1}{mh} \sum_{i=1}^m K\left(rac{\sigma - s_i}{h}
ight)$$

$$egin{array}{lll} \mathcal{K}:\mathbb{R} o\mathbb{R} & (ext{kernel}) \ h>0 & (ext{bandwidth}) \end{array}$$

There isn't an explicit formula for the **error** between f and \hat{f}^1 .

¹S. J. Sheather. "Density Estimation". In: *Statistical Science* 19(4) (2004), pp. 588–597.

	Model	Stochastic optimization problem		Conclusions
00000	0000	0000	000000	

Model

Model	Stochastic optimization problem	Conclusions
000		

Vertical ascent of a single stage launcher

State equation:

$$\begin{cases} \dot{r}(t,u) = v(t,u) & (\text{altitude}) \\ \dot{v}(t,u) = \frac{T}{m(t,u)}u(t) - g & (\text{speed}) \\ \dot{m}(t,u) = -\frac{T}{v_e}u(t) & (\text{mass}) \end{cases}$$

- g is the gravitational acceleration;
- T is the engine thrust;
- $v_{\rm e}$ is the fuel speed.

Control:

 $u \in \mathcal{U} := \{u : [0, +\infty)
ightarrow [0, 1] \subset \mathbb{R} \mid u ext{ is measurable} \}$

Model	Stochastic optimization problem	Conclusions
0000		

Vertical ascent of a single stage launcher

Initial conditions:

$$\begin{cases} r(0, u) = 0 & (altitude) \\ v(0, u) = 0 & (speed) \\ m(0, u) = (1 + k)m_{e} + m_{p} & (mass) \end{cases}$$

- k is the stage index;
- *m*_e is the fuel mass;
- \blacksquare $m_{\rm p}$ is the payload.

	Model	Stochastic optimization problem		Conclusions
00000	0000	0000	000000	

Deterministic optimization problem

Problem 1

 $\begin{cases} \mathsf{Compute} \\ \max_{u \in \mathcal{U}} m(t_{\mathrm{f}}, u) \\ \mathsf{Subject to} \\ r(t_{\mathrm{f}}, u) \geq r_{\mathrm{f}} \end{cases}$

- *t_f* is the fixed final time;
- $r_{\rm f}$ is the target final altitude.

Introduction 00000	Model ○○○●	Stochastic optimization problem	Results 000000	Conclusions
Solution				

Optimal cost:

 $m(t_{\rm f}, u^*) \approx 4.614$

Optimal control:

	Model	Stochastic optimization problem		Conclusions
00000	0000	0000	000000	

Stochastic optimization problem

Model	Stochastic optimization problem	Conclusions
	0000	

Stochastic optimization problem

Problem 2a

 $\begin{cases} \mathsf{Compute} \\ \max_{u \in \mathcal{U}} \mathbb{E}\left[m(t_{\mathsf{f}}, u)\right] \\ \mathsf{Subject to} \\ \mathbb{P}[R_{\mathsf{f}}(\mathcal{T}, u) \geq r_{\mathsf{f}}] \geq p \\ \mathcal{T} \sim U\left(\left[\overline{\mathcal{T}}(1 - \Delta \mathcal{T}), \overline{\mathcal{T}}(1 + \Delta \mathcal{T})\right]\right) \end{cases}$

p is the probability threshold.

Constraint:

For a given realization of T

$$R_{\rm f}(T,u):=r(t_{\rm f},u)$$

Introduction 00000	Model 0000	Stochastic optimization problem	Results 000000	Conclusions
Defermula	tion			

Reformulation

For every $u \in \mathcal{U}$ we have

$$\mathbb{P}[R_{\mathsf{f}}(T, u) \ge r_{\mathsf{f}}] = 1 - \int_{0}^{r_{\mathsf{f}}} f_{u}(\sigma) d\sigma =: 1 - F_{u}(r_{\mathsf{f}})$$
$$\mathbb{E}[m(t_{\mathsf{f}}, u)] = \int_{0}^{t_{\mathsf{f}}} m(0, u) - \frac{\mathbb{E}[T]}{v_{\mathsf{e}}} u(t) dt =: \overline{m}(t_{\mathsf{f}}, u)$$

 $F_u(r_f)$ is the **probability distribution function** of R_f , parameterized by u.

Introduction 00000	Model 0000	Stochastic optimization problem	Results 000000	Conclusions
Reformula	ntion			

Approximation of *f*_{*u*}:

• choose $n \in \mathbb{N}$ draw a sample from T

$$\{T_1, T_2, \ldots, T_n\}$$

■ choose a kernel K, a bandwidth h and define the Kernel Density Estimator of f_{me} as

$$\hat{f}_u(\sigma) := rac{1}{nh} \sum_{i=1}^n K\left(rac{\sigma - R_{\mathrm{f}}(T_i, u)}{h}\right)$$

Model	Stochastic optimization problem	Conclusions
	0000	

Deterministic optimization problem

Problem 2b

 $egin{cases} {\sf Compute} \ {egin{array}{c} \max_{u \in \mathcal{U}} \overline{m}(t_{
m f}, u) \ {\sf Subject to} \ \widehat{F}_u(r_{
m f}) \leq 1-p \ \end{cases}$

$$\hat{F}_u(r_{\mathsf{f}}) := \int_0^{r_{\mathsf{f}}} \hat{f}_u(\sigma) d\sigma \approx \int_0^{r_{\mathsf{f}}} f_u(\sigma) d\sigma =: F_u(r_{\mathsf{f}})$$

	Model	Stochastic optimization problem	Results	Conclusions
00000	0000	0000	000000	

Results

Introduction Mo	odel S	Stochastic optimization problem	Results	Conclusions
00000 00	000	0000	00000	

Choice of parameters

Г

Value
150

Parameter	Value
\overline{T}	150
ΔT	0.1
g	9.8
m _p	0.5
<i>r</i> _f	0.2
p	0.9

kernel:

$$K(y) = \frac{e^{-\frac{y^2}{2}}}{\sqrt{2\pi}}$$

bandwidth:

$$h=1.06n^{-\frac{1}{5}}\sigma_n$$

σ_n is the sample standard deviation.

For a **uniform** sample from T of size n = 500 we obtain

allowing us to deliver the payload with a **probability of 90.887%** even if the engine thrust T is subject to **random oscillations**.

Model	Stochastic optimization problem	Results	Conclusions
		00000	

Optimal solution

Approximations of **density** and **distribution** functions for n = 500.

Convergence of approximated solutions

The problem is solved for all $n \in \{10, 20, \dots, 500\}$.

Introduction 00000	Model 0000	Stochastic optimization problem	Results 0000●0	Conclusions

Convergence of approximated solutions

Let u^n be the optimal control obtained with a sample of size n. In order to **estimate** $\mathbb{P}[R_f(T, u^n) \ge r_f]$ we evaluate $R_f(T, u^n)$ at 10^5 random values of T, then define the **success rate**

$$R_n := \frac{\#\{T_i \quad \text{s.t.} \quad R_f(T_i, u^n) \ge r_f\}}{10^5}$$

and use the fact that

$$R_n \approx \mathbb{P}[R_f(T, u^n) \geq r_f]$$

Model	Stochastic optimization problem	Results	Conclusions
		00000	

Convergence of approximated solutions

Success rate

Success rate as a function of *n*.

	Model	Stochastic optimization problem		Conclusions
00000	0000	0000	000000	

Conclusions

Introduction 00000	Model 0000	Stochastic optimization problem	Results 000000	Conclusions

Conclusions

Deterministic problem:

Bang-bang control.

Stochastic problem:

Continuous control.

Introduction 00000	Model 0000	Stochastic optimization problem	Results 000000	Conclusions

Conclusions

Pros:

Efficiency: small samples lead to good approximations of f. Better results can be obtained with different h and K.

Cons:

 Lack of theory: no explicit formula for the error between f and f̂. No general criterion for choosing h and K.

Future work:

More random variables: use realistic models with an increasing number of uncertain parameters.

	Model	Stochastic optimization problem		Conclusions
00000	0000	0000	000000	

Fin