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Section I: Motivation
Complexity issues in semidefinite programming
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Spectrahedra

Definition (spectrahedron)

Given symmetric matrices Q(0), . . . ,Q(n) ∈ Rm×m, the associated
spectrahedron is defined as

S = {x ∈ Rn : Q(0)+x1Q(1)+· · ·+xnQ(n) is positive semidefinite} .

Example: an elliptope in R3 is a
spectrahedron defined by

Q(x) =

 1 x1 x2
x1 1 x3
x2 x3 1

 .

Figure: 3D elliptope. Source:
http://www.math.uni-frankfurt.de/
~rostalsk/pmwiki
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Semidefinite programming (SDP)

Definition (semidefinite programming)
The task of minimizing a linear function over a spectrahedron is
known as semidefinite programming (SDP).
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Complexity of SDP

It is sometimes said that SDP is solvable in polynomial time,
but this is true only in a restricted sense.1,2

We obtain ε-approximate solutions.
Typical complexity bounds are of form

Poly(n,m, log ε, logR, log r , . . . ) ,

where (R, r , . . . ) are some metric estimations of the
spectrahedron (and can be very large).
We suppose that the program has both primal and dual
strongly feasible points or, at least, that it has no duality gap.

1E. de Klerk and F. Vallentin. “On the Turing model complexity of interior
point methods for semidefinite programming”. arXiv:1507.03549. 2015.

2H. Mansouri and C. Roos. “A new full-Newton step O(n) infeasible
interior-point algorithm for semidefinite optimization”. In: Numerical
Algorithms 52.2 (2009), pp. 225–255.
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Semidefinite feasibility problem

Definition (Semidefinite feasibility problem, SDFP)

Given symmetric matrices Q(0), . . . ,Q(n), decide whether the
associated spectrahedron S is nonempty.

In its full generality, this problem is not known to be in NP
(let alone P) in the Turing machine model.
Exact answers to SDFP can be obtained by quantifier
elimination or critical points methods.

3,4

Motivating question
Is there a different approach to SDP?

3L. Porkolab and L. Khachiyan. “On the complexity of semidefinite
programs”. In: Journal of Global Optimization 10.4 (1997), pp. 351–365.

4D. Henrion, S. Naldi, and M. Safey El Din. “Exact algorithms for linear
matrix inequalities”. arXiv:1508.03715. 2015.
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Section II: Our contribution
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Our contribution

We show that the answer is positive... if one regards generic
SDFPs over a nonarchimedean field.

SDP is valid over any real closed field.
Main examples of real closed fields:

archimedean field of real numbers
nonarchimedean field of Puiseux series.

Theorem (in informal terms)

Generic instances of SDFP* over the nonarchimedean field of
Puiseux series can be solved efficiently using combinatorial
algorithms for stochastic games.
(*) Currently, the result is proven only for Metzler conic programs.
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Puiseux series

A (formal generalized) Puiseux series is a series of form

x = x(t) =
∞∑

i=1
ci tαi ,

where the sequence (αi)i ⊂ R is strictly decreasing and either
finite or unbounded ci are real.

The subset of absolutely converging (for t large enough)
Puiseux series forms a real closed field5, denoted here by K.
We say that x ≥ y if x(t) ≥ y(t) for all t large enough. This
is a linear order on K.

5L. van den Dries and P. Speissegger. “The real field with convergent
generalized power series”. In: Transactions of the AMS 350.11 (1998),
pp. 4377–4421.
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SDFP over Puiseux series

Definition (SDFP over Puiseux series)

Given symmetric matrices Q(0),Q(1), . . . ,Q(n), denote

Q(x) = Q(0) + x1Q
(1) + · · ·+ xnQ

(n) .

We want to decide if the spectrahedron

S = {x ∈ Kn
≥0 : Q(x) is positive semidefinite}

is nonempty.

By model completeness of real closed fields, SDFP over
Puiseux series is at least as hard as SDFP over real numbers.
Here, we restrict ourselves to the subclass of generic SDFPs
over Puiseux series.
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Example
Take the spectrahedral cone

Q(x) :=

 tx3 −x1 −t3/4x3
−x1 t−1x1 + t−5/4x3 − x2 −x3
−t3/4x3 −x3 t9/4x2

 � 0 .

We associate with Q(x) a
stochastic game with perfect
information.
Solving this game enables us
to decide that the cone is
nontrivial and to compute a
feasible point
(t−1/16, t−9/8, 1).

3

1

2
1

23

0
9/4

−5/4

−1

1 −3/4 0

0
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Tropical geometry

With every point x = x(t) =
∑∞

i=1 ci tαi ∈ K we associate its
valuation defined as the highest exponent occurring in x,

val(x) = lim
t→∞

logt |x(t)| = α1 .

We extend the valuation map to vectors by applying it
coordinate-wise.

Tropical geometry
Tropical geometry studies the images of algebraic sets over the
field of Puiseux series by the valuation map.
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Tropical spectrahedra

Definition
Suppose that S is a spectrahedron in Kn

≥0. Then we say that
val(S) is a tropical spectrahedron.

Tropical spectrahedra have polyhedral structure. This follows from
general results of model theory.6

Computing val(S) is difficult...
but not if S is generic!
In the generic case, val(S) can
be computed out of 1× 1 and
2× 2 minors of Q(x).

Figure: Tropical spectrahedron.

6D. Alessandrini. “Logarithmic limit sets of real semi-algebraic sets”. In:
Advances in Geometry 13.1 (2013), pp. 155–190.
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Our assumptions - Metzler spectrahedral cones

Definition
A square matrix is called a Metzler matrix if its off-diagonal
entries are nonpositive.

We take Metzler matrices Q(1), . . . ,Q(n), let

Q(x) = x1Q
(1) + · · ·+ xnQ

(n) ,

and define a spectrahedral cone

S = {x ∈ Kn
≥0 : Q(x) is positive semidefinite} .

We want to decide if this cone is nontrivial (i.e., if it contains
a point different than 0).
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Characterization of spectrahedra by minors

Lemma (inclusion of Metzler spectrahedra)
Let S2 denote the set of all x ∈ Kn

≥0 such that all principal 1× 1
and 2× 2 minors of Q(x) are nonnegative. Then S ⊂ S2.

Proof.
A matrix is positive semidefinite if and only if all of its principal
minors are nonnegative.
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Tropical Metzler spectrahedra

Theorem (tropical Metzler spectrahedra)

For tropically generic Metzler matrices (Q(k))k the set val(S) is
described by the tropical minor inequalities of order 1 and 2,

∀i , max
Q

(k)
ii >0

(xk + val(Q(k)
ii )) ≥ max

Q
(l)
jj <0

(xl + val(Q(l)
jj ))

and

∀i 6= j , max
Q

(k)
ii >0

(xk + val(Q(k)
ii )) + max

Q
(k)
jj >0

(xk + val(Q(k)
jj ))

≥ 2 max
Q

(l)
ij <0

(xl + val(Q(l)
ij )) .
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Shapley operators

Lemma
The set val(S) can be equivalently defined as the set of all x such
that for all k we have

xk ≤ min
Q

(k)
ij <0

(
− val(Q(k)

ij ) + 1
2
(
max
Q

(l)
ii >0

(val(Q(l)
ii ) + xl)

+ max
Q

(l)
jj >0

(val(Q(l)
jj ) + xl)

))
.

In other words, we have

val(S) = {x ∈ (R ∪ {−∞})n : x ≤ F (x)} ,

where F is a Shapley operator of a stochastic game. We denote
this game by Γ .
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Collatz-Wielandt property

If Γ is a stochastic mean payoff game in which Player Max
chooses the initial state, then we have

v = max
λ
{x ∈ (R ∪ {−∞})n : x + λe ≤ F (x), x 6= −∞} ,

where v denotes the value of Γ and F is its Shapley operator.

This follows from

M. Akian, S. Gaubert, and A. Guterman. “Tropical polyhedra
are equivalent to mean payoff games”. In: Int. J. Algebra
Comput. 22.1 (2012),

where it was used to establish the correspondence between
deterministic mean payoff games and nonarchimedean linear
programming.
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Application to SDFP over Puiseux series

Assumption (Subclass of SDFP over Puiseux series)

Given tropically generic symmetric Metzler matrices Q(1), . . . ,Q(n)

we want to decide if the spectrahedral cone

S = {x ∈ Kn
≥0 : x1Q

(1) + · · ·+ xnQ
(n) is positive semidefinite}

is nontrivial.

Theorem
We can construct a stochastic mean payoff game Γ such that its
value is nonnegative if and only if S is nontrivial.
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Example

Q(1) :=

 0 −1 0
−1 t−1 0
0 0 0

 ,
Q(2) :=

0 0 0
0 −1 0
0 0 t9/4

 ,
Q(3) :=

 t 0 −t3/4
0 t−5/4 −1
−t3/4 −1 0

 .

3

1

2
1

23

00
9/49/4

−5/4−5/4−5/4

−1−1

11 −3/4−3/4 000

00

Construction of Γ
We construct Γ as follows:
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Q(1) :=

 0 −1 0
−1 t−1 0
0 0 0

 ,
Q(2) :=

0 0 0
0 −1 0
0 0 t9/4

 ,
Q(3) :=

 t 0 −t3/4
0 t−5/4 −1
−t3/4 −1 0

 .

3

1

2
1

23

00
9/49/4

−5/4−5/4−5/4

−1−1

11 −3/4−3/4 000

00

Construction of Γ
The number of matrices (here: 3) defines the number of states
controlled by Player Min.
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Example

Q(1) :=

 0 −1 0
−1 t−1 0
0 0 0

 ,
Q(2) :=

0 0 0
0 −1 0
0 0 t9/4

 ,
Q(3) :=

 t 0 −t3/4
0 t−5/4 −1
−t3/4 −1 0

 .

3

1

2
1

23

00
9/49/4

−5/4−5/4−5/4

−1−1

11 −3/4−3/4 000

00

Construction of Γ
The size of matrices (here: 3× 3) defines the number of states
controlled by Player Max (here: 3).
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Example

Q(1) :=

 0 −1 0
−1 t−1 0
0 0 0

 ,
Q(2) :=

0 0 0
0 −1 0
0 0 t9/4

 ,
Q(3) :=

 t 0 −t3/4
0 t−5/4 −1
−t3/4 −1 0

 .

3

1

2
1

23

00
9/49/4

−5/4−5/4−5/4

−1−1

11 −3/4−3/4 000

00

Construction of Γ

If Q(k)
ii is negative, then Player Min can move from state k to

state i . After this move Player Max receives − val(Q(k)
ii ).
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Example

Q(1) :=

 0 −1 0
−1 t−1 0
0 0 0

 ,
Q(2) :=

0 0 0
0 −1 0
0 0 t9/4

 ,
Q(3) :=

 t 0 −t3/4
0 t−5/4 −1
−t3/4 −1 0

 .

3

1

2
1

23

00
9/49/4

−5/4−5/4−5/4

−1−1

11 −3/4−3/4 000

00

Construction of Γ

If Q(k)
ii is positive, then Player Max can move from state i to state

k. After this move Player Max receives val(Q(k)
ii ).
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Example

Q(1) :=

 0 −1 0
−1 t−1 0
0 0 0

 ,
Q(2) :=

0 0 0
0 −1 0
0 0 t9/4

 ,
Q(3) :=

 t 0 −t3/4
0 t−5/4 −1
−t3/4 −1 0

 .

3

1

2
1

23

00
9/49/4

−5/4−5/4−5/4

−1−1

11 −3/4−3/4 000

00

Construction of Γ

If Q(k)
ij is nonzero, i 6= j , then Player Min have a coin-toss move

from state k to states (i , j) and Player Max receives − val(Q(k)
ij ).
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Example

There is only one pair of optimal
policies

3 →
{

1 , 3
}
,

2 → 1 .

3

1

2
1

23

00
9/49/4

−5/4−5/4−5/4

−1−1

11 −3/4−3/4 000

00
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Example

There is only one pair of optimal
policies

3 →
{

1 , 3
}
,

2 → 1 .

The value equals 3/40 > 0.

3

1

2
1

23

00
9/49/4

−5/4−5/4−5/4

−1−1

11 −3/4−3/4 000

00
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Example

There is only one pair of optimal
policies

3 →
{

1 , 3
}
,

2 → 1 .

The value equals 3/40 > 0.

3

1

2
1

23

00
9/49/4

−5/4−5/4−5/4

−1−1

11 −3/4−3/4 000

00

Corollary
The spectrahedral cone S has a nontrivial point in the positive
orthant K3

≥0.
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Example

The Shapley operator is given by

F (x) = (x1 + x3
2 , x1−1,

x2 + x3
2 +7

8)

and (− 1
16 ,−

9
8 , 0) is a bias vector.

3

1

2
1

23

00
9/49/4

−5/4−5/4−5/4

−1−1

11 −3/4−3/4 000

00

Corollary
The spectrahedral cone S has a nontrivial point in the positive
orthant K3

≥0. For example, it contains the point (t−1/16, t−9/8, 1).
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Benchmark

We tested our method on randomly chosen matrices
Q(1), . . . ,Q(n) ∈ Km×m with positive entries on diagonals and no
zero entries. We used the value iteration algorithm.

(n,m) (10, 8) (10, 10) (10, 100) (10, 500) (10, 1000) (10, 2000)
time 0.007 0.009 0.009 0.042 0.159 0.564

(n,m) (50, 10) (50, 40) (50, 45) (50, 50) (50, 100) (50, 1000)
time 0.008 0.055 0.023 0.015 0.015 0.778

(n,m) (100, 10) (100, 80) (100, 90) (100, 95) (100, 100) (100, 500)
time 0.009 0.156 0.053 0.091 0.040 0.362

(n,m) (1000, 10) (1000, 100) (1000, 200) (2000, 10) (2000, 50) (2000, 100)
time 0.037 0.480 1.437 0.098 0.535 1.29

Table: Execution time (in sec.) of Procedure CheckFeasibility on random instances.
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Concluding remarks

We study the nonarchimedean version of semidefinite
programming and show a correspondence

Nonarchimedean
SDP

Stochastic
mean payoff games

This leads to an algorithm for generic semidefinite feasibility
problems over Puiseux series.
We relate two problems of open complexity:

Semidefinite feasibility problem (not known to be in NP)
Stochastic mean payoff games (belongs to NP ∩ coNP, not
known to be in P).
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Further study

Generalization to the non-Metzler, nonconic case.

Replacing the formal parameter t by a real number. Can this
method lead to an algorithm for SDP in real numbers?
Combinatorial description of all tropical spectrahedra (not
only the generic ones).
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Thank you for your attention

X. Allamigeon, S. Gaubert, and M. Skomra. “Solving generic
nonarchimedean semidefinite programs using stochastic game
algorithms”. arXiv:1603.06916. 2016
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