Tropical spectrahedra and stochastic games

Xavier Allamigeon, Stéphane Gaubert, Mateusz Skomra

INRIA and CMAP, École polytechnique, CNRS

25th March 2016

Domaine d'Intérêt Majeur (DIM) en Mathématiques

Talk based on: X. Allamigeon, S. Gaubert, and M. Skomra. "Solving generic nonarchimedean semidefinite programs using stochastic game algorithms". arXiv:1603.06916. 2016

Section I: Motivation

Complexity issues in semidefinite programming

Spectrahedra

Definition (spectrahedron)

Given symmetric matrices $Q^{(0)}, \ldots, Q^{(n)} \in \mathbb{R}^{m \times m}$, the associated **spectrahedron** is defined as

 $\mathcal{S} = \{x \in \mathbb{R}^n \colon Q^{(0)} + x_1 Q^{(1)} + \dots + x_n Q^{(n)} \text{ is positive semidefinite} \}.$

Example: an *elliptope* in \mathbb{R}^3 is a spectrahedron defined by

$$Q(x) = egin{bmatrix} 1 & x_1 & x_2 \ x_1 & 1 & x_3 \ x_2 & x_3 & 1 \end{bmatrix}.$$

Figure: 3D elliptope. Source: http://www.math.uni-frankfurt.de/ ~rostalsk/pmwiki

Definition (semidefinite programming)

The task of minimizing a linear function over a spectrahedron is known as **semidefinite programming (SDP)**.

• It is sometimes said that SDP is solvable in polynomial time, but this is true only in a restricted sense.^{1,2}

¹E. de Klerk and F. Vallentin. "On the Turing model complexity of interior point methods for semidefinite programming". arXiv:1507.03549. 2015. ²H. Mansouri and C. Roos. "A new full-Newton step *O*(*n*) infeasible interior-point algorithm for semidefinite optimization". In: *Numerical Algorithms* 52.2 (2009), pp. 225–255.

- It is sometimes said that SDP is solvable in polynomial time, but this is true only in a restricted sense.^{1,2}
- We obtain *\varepsilon*-approximate solutions.

¹E. de Klerk and F. Vallentin. "On the Turing model complexity of interior point methods for semidefinite programming". arXiv:1507.03549. 2015. ²H. Mansouri and C. Roos. "A new full-Newton step *O*(*n*) infeasible interior-point algorithm for semidefinite optimization". In: *Numerical Algorithms* 52.2 (2009), pp. 225–255.

- It is sometimes said that SDP is solvable in polynomial time, but this is true only in a restricted sense.^{1,2}
- We obtain ε -approximate solutions.
- Typical complexity bounds are of form

 $\operatorname{Poly}(n, m, \log \varepsilon, \log R, \log r, ...),$

where (R, r, ...) are some metric estimations of the spectrahedron (and can be very large).

¹E. de Klerk and F. Vallentin. "On the Turing model complexity of interior point methods for semidefinite programming". arXiv:1507.03549. 2015. ²H. Mansouri and C. Roos. "A new full-Newton step *O*(*n*) infeasible interior-point algorithm for semidefinite optimization". In: *Numerical Algorithms* 52.2 (2009), pp. 225–255.

- It is sometimes said that SDP is solvable in polynomial time, but this is true only in a restricted sense.^{1,2}
- We obtain ε -approximate solutions.
- Typical complexity bounds are of form

 $\operatorname{Poly}(n, m, \log \varepsilon, \log R, \log r, ...),$

where (R, r, ...) are some metric estimations of the spectrahedron (and can be very large).

• We suppose that the program has both primal and dual strongly feasible points or, at least, that it has no duality gap.

¹E. de Klerk and F. Vallentin. "On the Turing model complexity of interior point methods for semidefinite programming". arXiv:1507.03549. 2015. ²H. Mansouri and C. Roos. "A new full-Newton step *O*(*n*) infeasible interior-point algorithm for semidefinite optimization". In: *Numerical Algorithms* 52.2 (2009), pp. 225–255.

Given symmetric matrices $Q^{(0)}, \ldots, Q^{(n)}$, decide whether the associated spectrahedron S is nonempty.

³L. Porkolab and L. Khachiyan. "On the complexity of semidefinite programs". In: *Journal of Global Optimization* 10.4 (1997), pp. 351–365.
 ⁴D. Henrion, S. Naldi, and M. Safey El Din. "Exact algorithms for linear matrix inequalities". arXiv:1508.03715, 2015.

Given symmetric matrices $Q^{(0)}, \ldots, Q^{(n)}$, decide whether the associated spectrahedron S is nonempty.

 In its full generality, this problem is not known to be in NP (let alone P) in the Turing machine model.

³L. Porkolab and L. Khachiyan. "On the complexity of semidefinite programs". In: *Journal of Global Optimization* 10.4 (1997), pp. 351–365.
 ⁴D. Henrion, S. Naldi, and M. Safey El Din. "Exact algorithms for linear matrix inequalities". arXiv:1508.03715. 2015.

Given symmetric matrices $Q^{(0)}, \ldots, Q^{(n)}$, decide whether the associated spectrahedron S is nonempty.

- In its full generality, this problem is not known to be in NP (let alone P) in the Turing machine model.
- Exact answers to SDFP can be obtained by quantifier elimination or critical points methods.^{3,4}

³L. Porkolab and L. Khachiyan. "On the complexity of semidefinite programs". In: *Journal of Global Optimization* 10.4 (1997), pp. 351–365.
 ⁴D. Henrion, S. Naldi, and M. Safey El Din. "Exact algorithms for linear matrix inequalities". arXiv:1508.03715, 2015.

Given symmetric matrices $Q^{(0)}, \ldots, Q^{(n)}$, decide whether the associated spectrahedron S is nonempty.

- In its full generality, this problem is not known to be in NP (let alone P) in the Turing machine model.
- Exact answers to SDFP can be obtained by quantifier elimination or critical points methods.^{3,4}

Motivating question

Is there a different approach to SDP?

³L. Porkolab and L. Khachiyan. "On the complexity of semidefinite programs". In: *Journal of Global Optimization* 10.4 (1997), pp. 351–365.
 ⁴D. Henrion, S. Naldi, and M. Safey El Din. "Exact algorithms for linear matrix inequalities". arXiv:1508.03715. 2015.

Section II: Our contribution

Our contribution

• We show that the answer is positive... if one regards generic SDFPs over a nonarchimedean field.

Our contribution

- We show that the answer is positive... if one regards generic SDFPs over a nonarchimedean field.
- SDP is valid over any real closed field.

Our contribution

- We show that the answer is positive... if one regards generic SDFPs over a nonarchimedean field.
- SDP is valid over any real closed field.
- Main examples of real closed fields:
 - archimedean field of real numbers
 - nonarchimedean field of Puiseux series.

- We show that the answer is positive... if one regards generic SDFPs over a nonarchimedean field.
- SDP is valid over any real closed field.
- Main examples of real closed fields:
 - archimedean field of real numbers
 - nonarchimedean field of Puiseux series.

Theorem (in informal terms)

Generic instances of SDFP^{*} over the nonarchimedean field of Puiseux series can be solved efficiently using combinatorial algorithms for stochastic games. (*) Currently, the result is proven only for Metzler conic programs. • A (formal generalized) Puiseux series is a series of form

$$m{x}=m{x}(t)=\sum_{i=1}^{\infty}c_{i}t^{lpha_{i}}$$
 ,

where the sequence $(\alpha_i)_i \subset \mathbb{R}$ is strictly decreasing and either finite or unbounded c_i are real.

⁵L. van den Dries and P. Speissegger. "The real field with convergent generalized power series". In: *Transactions of the AMS* 350.11 (1998), pp. 4377–4421.

• A (formal generalized) Puiseux series is a series of form

$$m{x}=m{x}(t)=\sum_{i=1}^{\infty}c_it^{lpha_i}$$
 ,

where the sequence $(\alpha_i)_i \subset \mathbb{R}$ is strictly decreasing and either finite or unbounded c_i are real.

• The subset of absolutely converging (for *t* large enough) Puiseux series forms a real closed field⁵, denoted here by K.

⁵L. van den Dries and P. Speissegger. "The real field with convergent generalized power series". In: *Transactions of the AMS* 350.11 (1998), pp. 4377–4421.

• A (formal generalized) Puiseux series is a series of form

$$m{x}=m{x}(t)=\sum_{i=1}^{\infty}c_{i}t^{lpha_{i}}$$
 ,

where the sequence $(\alpha_i)_i \subset \mathbb{R}$ is strictly decreasing and either finite or unbounded c_i are real.

- The subset of absolutely converging (for t large enough)
 Puiseux series forms a real closed field⁵, denoted here by K.
- We say that $x \ge y$ if $x(t) \ge y(t)$ for all t large enough. This is a linear order on \mathbb{K} .

⁵L. van den Dries and P. Speissegger. "The real field with convergent generalized power series". In: *Transactions of the AMS* 350.11 (1998), pp. 4377–4421.

SDFP over Puiseux series

Definition (SDFP over Puiseux series)

Given symmetric matrices $oldsymbol{Q}^{(0)}, oldsymbol{Q}^{(1)}, \dots, oldsymbol{Q}^{(n)}$, denote

$$Q(x) = Q^{(0)} + x_1 Q^{(1)} + \cdots + x_n Q^{(n)}$$
.

We want to decide if the spectrahedron

 $oldsymbol{\mathcal{S}} = \{oldsymbol{x} \in \mathbb{K}^n_{\geq 0} \colon oldsymbol{Q}(oldsymbol{x}) ext{ is positive semidefinite} \}$

is nonempty.

SDFP over Puiseux series

Definition (SDFP over Puiseux series)

Given symmetric matrices $oldsymbol{Q}^{(0)}, oldsymbol{Q}^{(1)}, \dots, oldsymbol{Q}^{(n)}$, denote

$$Q(x) = Q^{(0)} + x_1 Q^{(1)} + \cdots + x_n Q^{(n)}$$
.

We want to decide if the spectrahedron

 $oldsymbol{\mathcal{S}} = \{oldsymbol{x} \in \mathbb{K}^n_{\geq 0} \colon oldsymbol{Q}(oldsymbol{x}) ext{ is positive semidefinite} \}$

is nonempty.

- By model completeness of real closed fields, SDFP over Puiseux series is at least as hard as SDFP over real numbers.
- Here, we restrict ourselves to the subclass of **generic** SDFPs over Puiseux series.

Take the spectrahedral cone

$$egin{aligned} m{Q}(m{x}) &\coloneqq egin{bmatrix} t x_3 & -x_1 & -t^{3/4} x_3 \ -x_1 & t^{-1} x_1 + t^{-5/4} x_3 - x_2 & -x_3 \ -t^{3/4} x_3 & -x_3 & t^{9/4} x_2 \end{bmatrix} \succeq m{0}\,. \end{aligned}$$

Take the spectrahedral cone

$$Q(x) := egin{bmatrix} tx_3 & -x_1 & -t^{3/4}x_3 \ -x_1 & t^{-1}x_1 + t^{-5/4}x_3 - x_2 & -x_3 \ -t^{3/4}x_3 & -x_3 & t^{9/4}x_2 \end{bmatrix} \succeq 0 \,.$$

• We associate with Q(x) a stochastic game with perfect information.

Take the spectrahedral cone

$$egin{aligned} m{Q}(m{x}) &\coloneqq egin{bmatrix} t x_3 & -x_1 & -t^{3/4} x_3 \ -x_1 & t^{-1} x_1 + t^{-5/4} x_3 - x_2 & -x_3 \ -t^{3/4} x_3 & -x_3 & t^{9/4} x_2 \end{bmatrix} \succeq m{0} \,. \end{aligned}$$

- We associate with Q(x) a stochastic game with perfect information.
- Solving this game enables us to decide that the cone is nontrivial and to compute a feasible point $(t^{-1/16}, t^{-9/8}, 1)$.

Tropical geometry

• With every point $x = x(t) = \sum_{i=1}^{\infty} c_i t^{\alpha_i} \in \mathbb{K}$ we associate its valuation defined as the highest exponent occurring in x,

$$\mathsf{val}({m x}) = \lim_{t o \infty} \mathsf{log}_t |{m x}(t)| = lpha_1$$
 .

Tropical geometry

• With every point $x = x(t) = \sum_{i=1}^{\infty} c_i t^{\alpha_i} \in \mathbb{K}$ we associate its valuation defined as the highest exponent occurring in x,

$$\mathsf{val}(x) = \lim_{t \to \infty} \log_t |x(t)| = \alpha_1$$
.

We extend the valuation map to vectors by applying it coordinate-wise.

Tropical geometry

• With every point $x = x(t) = \sum_{i=1}^{\infty} c_i t^{\alpha_i} \in \mathbb{K}$ we associate its valuation defined as the highest exponent occurring in x,

$$\mathsf{val}(x) = \lim_{t \to \infty} \log_t |x(t)| = \alpha_1$$
.

We extend the valuation map to vectors by applying it coordinate-wise.

Tropical geometry

Tropical geometry studies the images of algebraic sets over the field of Puiseux series by the valuation map.

Definition

Suppose that S is a spectrahedron in $\mathbb{K}_{\geq 0}^n$. Then we say that val(S) is a **tropical spectrahedron**.

⁶D. Alessandrini. "Logarithmic limit sets of real semi-algebraic sets". In: *Advances in Geometry* 13.1 (2013), pp. 155–190.

Definition

Suppose that S is a spectrahedron in $\mathbb{K}^n_{\geq 0}$. Then we say that val(S) is a **tropical spectrahedron**.

Tropical spectrahedra have polyhedral structure. This follows from general results of model theory. $^{\rm 6}$

⁶D. Alessandrini. "Logarithmic limit sets of real semi-algebraic sets". In: *Advances in Geometry* 13.1 (2013), pp. 155–190.

Definition

Suppose that S is a spectrahedron in $\mathbb{K}^n_{\geq 0}$. Then we say that val(S) is a **tropical spectrahedron**.

Tropical spectrahedra have polyhedral structure. This follows from general results of model theory. $^{\rm 6}$

Figure: Tropical spectrahedron.

⁶D. Alessandrini. "Logarithmic limit sets of real semi-algebraic sets". In: *Advances in Geometry* 13.1 (2013), pp. 155–190.

Definition

Suppose that S is a spectrahedron in $\mathbb{K}^n_{\geq 0}$. Then we say that val(S) is a **tropical spectrahedron**.

Tropical spectrahedra have polyhedral structure. This follows from general results of model theory. $^{\rm 6}$

• Computing $\mathsf{val}(\mathcal{S})$ is difficult...

Figure: Tropical spectrahedron.

⁶D. Alessandrini. "Logarithmic limit sets of real semi-algebraic sets". In: *Advances in Geometry* 13.1 (2013), pp. 155–190.

Definition

Suppose that S is a spectrahedron in $\mathbb{K}^n_{\geq 0}$. Then we say that val(S) is a **tropical spectrahedron**.

Tropical spectrahedra have polyhedral structure. This follows from general results of model theory. $^{\rm 6}$

- Computing $val(\mathcal{S})$ is difficult...
- but not if ${\boldsymbol{\mathcal{S}}}$ is generic!
- In the generic case, val(\mathcal{S}) can be computed out of 1×1 and 2×2 minors of Q(x).

Figure: Tropical spectrahedron.

⁶D. Alessandrini. "Logarithmic limit sets of real semi-algebraic sets". In: *Advances in Geometry* 13.1 (2013), pp. 155–190.

Definition

A square matrix is called a **Metzler matrix** if its off-diagonal entries are nonpositive.

Definition

A square matrix is called a **Metzler matrix** if its off-diagonal entries are nonpositive.

 ${\scriptstyle \bullet }$ We take Metzler matrices ${\scriptstyle {m Q}^{(1)},\ldots, {\it Q}^{(n)}}$, let

$$oldsymbol{Q}(oldsymbol{x}) = oldsymbol{x}_1 oldsymbol{Q}^{(1)} + \cdots + oldsymbol{x}_n oldsymbol{Q}^{(n)} \, ,$$

and define a spectrahedral cone

 $oldsymbol{\mathcal{S}} = \{ x \in \mathbb{K}^n_{>0} \colon Q(x) ext{ is positive semidefinite} \}$.

• We want to decide if this cone is nontrivial (i.e., if it contains a point different than 0).

Lemma (inclusion of Metzler spectrahedra)

Let S_2 denote the set of all $x \in \mathbb{K}^n_{\geq 0}$ such that all principal 1×1 and 2×2 minors of Q(x) are nonnegative. Then $S \subset S_2$.

Proof.

A matrix is positive semidefinite if and only if all of its principal minors are nonnegative.

Theorem (tropical Metzler spectrahedra)

For tropically generic Metzler matrices $(Q^{(k)})_k$ the set val(S) is described by the tropical minor inequalities of order 1 and 2,

$$egin{aligned} &orall i, \max_{oldsymbol{Q}_{ii}^{(k)}>0}(x_k+ ext{val}(oldsymbol{Q}_{ii}^{(k)})) &\geq \max_{oldsymbol{Q}_{jj}^{(l)}<0}(x_l+ ext{val}(oldsymbol{Q}_{jj}^{(l)})) \ & and \ &orall i
eq j, \max_{oldsymbol{Q}_{ii}^{(k)}>0}(x_k+ ext{val}(oldsymbol{Q}_{ii}^{(k)})) + \max_{oldsymbol{Q}_{jj}^{(k)}>0}(x_k+ ext{val}(oldsymbol{Q}_{jj}^{(k)})) \ &\geq 2\max_{oldsymbol{Q}_{ij}^{(l)}<0}(x_l+ ext{val}(oldsymbol{Q}_{ij}^{(l)})) \,. \end{aligned}$$

Lemma

The set val(S) can be equivalently defined as the set of all x such that for all k we have

$$egin{aligned} & x_k \leq \min_{oldsymbol{Q}_{ij}^{(k)} < 0} \Big(- \operatorname{val}(oldsymbol{Q}_{ij}^{(k)}) + rac{1}{2} ig(\max_{oldsymbol{Q}_{ij}^{(l)} > 0} (\operatorname{val}(oldsymbol{Q}_{ii}^{(l)}) + x_l) \ & + \max_{oldsymbol{Q}_{ji}^{(l)} > 0} (\operatorname{val}(oldsymbol{Q}_{jj}^{(l)}) + x_l)) ig) \end{aligned}$$

In other words, we have

$$\operatorname{val}(\mathcal{S}) = \{x \in (\mathbb{R} \cup \{-\infty\})^n \colon x \leq F(x)\},\$$

where F is a Shapley operator of a stochastic game. We denote this game by Γ .

Collatz-Wielandt property

• If Γ is a stochastic mean payoff game in which Player Max chooses the initial state, then we have

$$v = \max_{\lambda} \{ x \in (\mathbb{R} \cup \{-\infty\})^n \colon x + \lambda e \le F(x), x \ne -\infty \},\$$

where v denotes the value of Γ and F is its Shapley operator.

• If Γ is a stochastic mean payoff game in which Player Max chooses the initial state, then we have

$$\nu = \max_{\lambda} \{ x \in (\mathbb{R} \cup \{-\infty\})^n \colon x + \lambda e \le F(x), x \ne -\infty \},\$$

where v denotes the value of Γ and F is its Shapley operator. • This follows from

• M. Akian, S. Gaubert, and A. Guterman. "Tropical polyhedra are equivalent to mean payoff games". In: *Int. J. Algebra Comput.* 22.1 (2012),

where it was used to establish the correspondence between **deterministic** mean payoff games and nonarchimedean **linear** programming.

Assumption (Subclass of SDFP over Puiseux series)

Given tropically generic symmetric Metzler matrices $Q^{(1)}, \ldots, Q^{(n)}$ we want to decide if the spectrahedral cone

$$oldsymbol{\mathcal{S}} = \{oldsymbol{x} \in \mathbb{K}^n_{>0} \colon oldsymbol{x}_1 oldsymbol{Q}^{(1)} + \dots + oldsymbol{x}_n oldsymbol{Q}^{(n)} ext{ is positive semidefinite} \}$$

is nontrivial.

Assumption (Subclass of SDFP over Puiseux series)

Given tropically generic symmetric Metzler matrices $Q^{(1)}, \ldots, Q^{(n)}$ we want to decide if the spectrahedral cone

$$oldsymbol{\mathcal{S}} = \{oldsymbol{x} \in \mathbb{K}_{\geq 0}^n \colon oldsymbol{x}_1 oldsymbol{Q}^{(1)} + \dots + oldsymbol{x}_n oldsymbol{Q}^{(n)} ext{ is positive semidefinite} \}$$

is nontrivial.

Theorem

We can construct a stochastic mean payoff game Γ such that its value is nonnegative if and only if S is nontrivial.

$$egin{aligned} m{Q}^{(1)} &:= egin{bmatrix} 0 & -1 & 0 \ -1 & t^{-1} & 0 \ 0 & 0 & 0 \end{bmatrix}, \ m{Q}^{(2)} &:= egin{bmatrix} 0 & 0 & 0 \ 0 & -1 & 0 \ 0 & 0 & t^{9/4} \end{bmatrix}, \ m{Q}^{(3)} &:= egin{bmatrix} t & 0 & -t^{3/4} \ 0 & t^{-5/4} & -1 \ -t^{3/4} & -1 & 0 \end{bmatrix} \end{aligned}$$

Construction of \varGamma

We construct Γ as follows:

.

$$egin{aligned} m{Q}^{(1)} &:= egin{bmatrix} 0 & -1 & 0 \ -1 & t^{-1} & 0 \ 0 & 0 & 0 \end{bmatrix}, \ m{Q}^{(2)} &:= egin{bmatrix} 0 & 0 & 0 \ 0 & -1 & 0 \ 0 & 0 & t^{9/4} \end{bmatrix}, \ m{Q}^{(3)} &:= egin{bmatrix} t & 0 & -t^{3/4} \ 0 & t^{-5/4} & -1 \ -t^{3/4} & -1 & 0 \end{bmatrix} \end{aligned}$$

Construction of \varGamma

The number of matrices (here: 3) defines the number of states controlled by Player Min.

2

1

Construction of \varGamma

The size of matrices (here: 3×3) defines the number of states controlled by Player Max (here: 3).

Construction of \varGamma

If $Q_{ii}^{(k)}$ is negative, then Player Min can move from state k to state i. After this move Player Max receives $-\operatorname{val}(Q_{ii}^{(k)})$.

Construction of Γ

If $Q_{ii}^{(k)}$ is positive, then Player Max can move from state *i* to state *k*. After this move Player Max receives val $(Q_{ii}^{(k)})$.

Construction of Γ

If $Q_{ij}^{(k)}$ is nonzero, $i \neq j$, then Player Min have a coin-toss move from state k to states (i, j) and Player Max receives $-\operatorname{val}(Q_{ij}^{(k)})$.

There is only one pair of optimal policies

$$\begin{array}{c} (\underline{3}) \rightarrow \{\underline{1}, \underline{3}\}, \\ \underline{2} \rightarrow (\underline{1}). \end{array}$$

There is only one pair of optimal policies

$$\begin{array}{c} (\underline{3}) \rightarrow \{\underline{1}, \underline{3}\}, \\ \underline{2} \rightarrow (\underline{1}). \end{array}$$

The value equals 3/40 > 0.

There is only one pair of optimal policies

$$\begin{array}{c} (\underline{3}) \rightarrow \{\underline{1}, \underline{3}\}, \\ \underline{2} \rightarrow (\underline{1}). \end{array}$$

The value equals 3/40 > 0.

Corollary

The spectrahedral cone ${\boldsymbol{\mathcal{S}}}$ has a nontrivial point in the positive orthant $\mathbb{K}^3_{\geq 0}.$

The Shapley operator is given by

$$F(x) = \left(\frac{x_1 + x_3}{2}, x_1 - 1, \frac{x_2 + x_3}{2} + \frac{7}{8}\right)$$

and $\left(-\frac{1}{16},-\frac{9}{8},0\right)$ is a bias vector.

Corollary

The spectrahedral cone S has a nontrivial point in the positive orthant $\mathbb{K}^3_{\geq 0}$. For example, it contains the point $(t^{-1/16}, t^{-9/8}, 1)$.

We tested our method on randomly chosen matrices $Q^{(1)}, \ldots, Q^{(n)} \in \mathbb{K}^{m \times m}$ with positive entries on diagonals and no zero entries. We used the value iteration algorithm.

(n, m)	(10, 8)	(10, 10)	(10, 100)	(10, 500)	(10, 1000)	(10, 2000)
time	0.007	0.009	0.009	0.042	0.159	0.564
(n, m)	(50, 10)	(50, 40)	(50, 45)	(50, 50)	(50, 100)	(50, 1000)
time	0.008	0.055	0.023	0.015	0.015	0.778
(n, m)	(100, 10)	(100, 80)	(100,90)	(100,95)	(100, 100)	(100, 500)
time	0.009	0.156	0.053	0.091	0.040	0.362
(n, m)	(1000, 10)	(1000, 100)	(1000, 200)	(2000, 10)	(2000, 50)	(2000, 100)
time	0.037	0.480	1.437	0.098	0.535	1.29

Table: Execution time (in sec.) of Procedure CHECKFEASIBILITY on random instances.

Concluding remarks

• We study the nonarchimedean version of semidefinite programming and show a correspondence

Concluding remarks

• We study the nonarchimedean version of semidefinite programming and show a correspondence

• This leads to an algorithm for generic semidefinite feasibility problems over Puiseux series.

Concluding remarks

• We study the nonarchimedean version of semidefinite programming and show a correspondence

- This leads to an algorithm for generic semidefinite feasibility problems over Puiseux series.
- We relate two problems of open complexity:
 - Semidefinite feasibility problem (not known to be in NP)
 - Stochastic mean payoff games (belongs to NP ∩ coNP, not known to be in P).

• Generalization to the non-Metzler, nonconic case.

- Generalization to the non-Metzler, nonconic case.
- Replacing the formal parameter *t* by a real number. Can this method lead to an algorithm for SDP in real numbers?

- Generalization to the non-Metzler, nonconic case.
- Replacing the formal parameter *t* by a real number. Can this method lead to an algorithm for SDP in real numbers?
- Combinatorial description of **all** tropical spectrahedra (not only the generic ones).

Thank you for your attention

X. Allamigeon, S. Gaubert, and M. Skomra. "Solving generic nonarchimedean semidefinite programs using stochastic game algorithms". arXiv:1603.06916. 2016

References I

- M. Akian, S. Gaubert, and A. Guterman. "Tropical polyhedra are equivalent to mean payoff games". In: *Int. J. Algebra Comput.* 22.1 (2012).
- D. Alessandrini. "Logarithmic limit sets of real semi-algebraic sets". In: *Advances in Geometry* 13.1 (2013), pp. 155–190.
- X. Allamigeon, S. Gaubert, and M. Skomra. "Solving generic nonarchimedean semidefinite programs using stochastic game algorithms". arXiv:1603.06916. 2016.
- L. van den Dries and P. Speissegger. "The real field with convergent generalized power series". In: *Transactions of the AMS* 350.11 (1998), pp. 4377–4421.
- D. Henrion, S. Naldi, and M. Safey El Din. "Exact algorithms for linear matrix inequalities". arXiv:1508.03715. 2015.

- E. de Klerk and F. Vallentin. "On the Turing model complexity of interior point methods for semidefinite programming". arXiv:1507.03549. 2015.
- H. Mansouri and C. Roos. "A new full-Newton step O(n) infeasible interior-point algorithm for semidefinite optimization". In: *Numerical Algorithms* 52.2 (2009), pp. 225–255.
- L. Porkolab and L. Khachiyan. "On the complexity of semidefinite programs". In: *Journal of Global Optimization* 10.4 (1997), pp. 351–365.