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Stochastic control problems and the associated PDE

We consider the stochastic differential equation{
dXt = (g(Xt , γt)− αXt)dt + 2σ(Xt)dWt

X0 = x ∈ RN ,

(Wt) is an N-dimentional standard Brownian motion defined on a filtered probability
space (Ω,F ,Ft ,P), the control γt takes value on a compact set A ⊂ RN which is defined
as the collection of all Ft-progressively measurable, g is a continuous vector on RN , σ is
a continuous N × N matrix and α-terms is called Ornstein-Uhlenbeck operator (α > 0).

Value functions

infinite horizon: uλ(x) = inf
γ
E
(∫ ∞

0

e−λsL(Xs , γs)ds

)
, (1)

finite horizon: u(x , t) = inf
γ
E
(∫ t

0

L(Xs , γs)ds

)
, (2)

where L is a running cost or Lagrangian function defined L(Xs , γs) = l(Xs , γx) + f (Xs),
l(x , .) is a bounded function in x and f is possibly an unbounded function.
By the Dynamic Programming Principle, uλ(x), u(x , t) are viscosity solution of

λuλ(x)− tr(σ(x)σT (x)D2uλ(x)) + αx .Duλ(x) + H(x ,Duλ(x)) = f (x) in RN

ut(x , t)− tr(σ(x)σT (x)D2u(x , t)) + αx .Du(x , t) + H(x ,Du(x , t)) = f (x) (CP)

respectively, where

H(x , p) = max
a∈A
{−g(x , a).p − l(x , a)}. (3)
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Motivations to obtain Lipschitz regularity

Motivations

By letting λ→ 0 in (1) or t →∞ in (2), it is called ”ergodic control problem”.
Question: Under which conditions on (g , σ),

Question 1: λuλ →? as λ→ 0,

Question 2:
u(., t)

t
→? as t →∞.

Some references: Arisawa(1997), Arisawa-Lions (1998), Lions-Papanicolaou-Varadhan,
Fujita-Ishii-Loreti(2006),...
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Stationary problem and assumptions on the datas

Stationary problem

For λ ∈ (0, 1), we consider the stationary problem

λuλ(x)− tr(σ(x)σT (x)D2uλ(x)) + αx .Duλ(x) + H(x ,Duλ(x)) = f (x) in RN . (SP)

Here σ is a diffusion matrix.
Let µ > 0 we define the function φµ ∈ C∞(RN) by

φµ(x) = eµ
√
|x|2+1 for x ∈ RN .

We introduce the class of solution for (SP)

Eµ(RN) = {v : RN → R : lim
|x|→+∞

v(x)

φµ(x)
= 0}.

Hereafter we use φ instead of φµ for simplicity of notation.
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Stationary problem and assumptions on the datas

Assumptions on the datas

Diffusion matrix:{
σ ∈ C(RN ,MN), there exists Cσ, Lσ > 0 such that

|σ(x)| ≤ Cσ, |σ(x)− σ(y)| ≤ Lσ|x − y | x ∈ RN .
(4){

(ellipticity) There exists ν > 0 such that

νI ≤ σ(x)σ(x)T x ∈ RN ,
(5)

”ellipticity” means that the diffusion is nondegenerate in the stochastic differential
equation.

Assumption on H:

|H(x , p)| ≤ CH(1 + |p|), x , p ∈ RN . (6)

This is very general assumption for the Hamiltonian H. From the definition H in (3), it is
enough to make sure that g and l are bounded in x .

Assumption on f :{
For f ∈ Eµ(RN), there exists Cf , µ > 0 such that

|f (x)− f (y)| ≤ Cf (φµ(x) + φµ(y))|x − y |, x , y ∈ RN .
(7)
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Statement and application of Lipschitz regularity result

Statement of Lipschitz regularity result

Theorem 1

Let µ > 0, uλ ∈ C(RN) ∩ Eµ(RN) be a solution of (SP). Assume that (4), (5), (6) and
(7) hold. For any α > 0, there exists a constant C > 0 independent of λ such that

|uλ(x)− uλ(y)| ≤ C |x − y |(φ(x) + φ(y)), x , y ∈ RN , λ ∈ (0, 1) (LR).

Some recent results:

Fujita-Ishii-Loreti (2006)

Fujita-Loreti (2009)

Bardi-Cesaroni-Ghilli (2015).
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Statement and application of Lipschitz regularity result

Application to ergodic peoblem

We consider the ergodic control problem

c − tr(σ(x)σT (x)D2v(x)) + αx .Dv(x) + H(x ,Dv(x)) = f (x) in RN , (EP)

where the unknown is a pair of a constant c and a function v .

a) Answer question 1.

Theorem 2

Under the assumption of Theorem 1, there is a solution (c, v) ∈ R×C(RN) of (EP). Let
(c1, v1), (c2, v2) ∈ R× C(RN) are two solutions of (EP), then c1 = c2 and there is a
constant C ∈ R such that v1 − v2 = C in RN .

Proof:
1. Existence of solution. We first prove that there exists a constant C > 0 independent
of λ such that

|λuλ(x)| ≤ C on balls of RN . (8)

We consider

max
RN
{uλ(x)− φ(x)} = uλ(y)− φ(y), for some y ∈ RN .
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Statement and application of Lipschitz regularity result

Proof (Cont.)

Since uλ is a viscosity solution and hence subsolution of (SP). Then, at the maximum
point y , we have

λuλ(y)− tr(σ(y)σT (y)D2φ(y)) + αy .Dφ(y) + H(y ,Dφ(y)) ≤ f (y).

Moreover, φ satisfies

−tr(σ(y)σT (y)D2φ(y)) + αy .Dφ(y)− CH |Dφ(y)| ≥ φ(y)− B,

here CH ,B > 0. Therefore, using the sublinearity of H we obtain

λuλ(y) ≤ f (y)− φ(y) + B + CH .

Since y is a maximum point of u(x)− φ(x) for x ∈ RN , then using the above inequality
we have

λuλ(x) ≤ λφ(x) + λuλ(y)− λφ(y) ∀x ∈ RN

≤ λφ(x)− φ(y) + B + CH + f (y)− λφ(y) λ ∈ (0, 1)

≤ φ(x) + B + CH + f (y)− φ(y)

≤ C ∀x ∈ RN .

The proof for the opposite inequality is the same by considering minRN {uλ(x) + φ(x)}.
Now we set vλ(x) = uλ(x)− uλ(0) and using (LR) we have

|vλ(x)| ≤ C |x |(φ(x) + 1)

|vλ(x)− vλ(y)| ≤ C |x − y |(φ(x) + φ(y)).
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Statement and application of Lipschitz regularity result

Proof (Cont.)

Therefore {vλ}λ∈(0,1) is a uniformly bounded and equi-continuous family on any balls of
RN . Then by Ascoli’s theorem, we can choose a sequence {λj}j∈N ⊂ (0, 1) such that

vλj → v in C(RN) as λj → 0.

And from (8) we have

λju
λj (x)→ c ∈ R uniformly on balls of RN .

Note that vλj is a solution of

λjv
λj − tr(σ(x)σT (x)D2vλj (x)) + αx .Dvλj (x) + H(x ,Dvλj (x)) = f (x)− λju

λj (0)

↓ λj → 0

−tr(σ(x)σT (x)D2v) + αx .Dv(x) + H(x ,Dv(x)) = f (x)− c.

By stability of viscosity solutions we find that (c, v) is a solution of ergodic problem (EP).
2. Uniqueness. See in Fujita-Ishii-Loreti (2006).

b) Answer question 2.

Theorem 3

Let u ∈ C(RN × [0,T )) be a solution of (CP) with initial data u(x , 0) = u0(x). Let
(c, v) ∈ R× C(RN) be a solution of (EP). Let L > 0 such that |u0(x)− v(x)| ≤ L in
RN . Then

u(x , t)

t
→ c, as t →∞.
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Statement and application of Lipschitz regularity result

Proof.

We easily check that v(x) + ct − L and v(x) + ct + L are solutions of (CP) with the
initial condition replaced v(x)± L. Then applying comparison principle for (CP) we get

v(x) + ct − L ≤ u(x , t) ≤ v(x) + ct + L.

This implies

v(x)− L

t
≤ u(x , t)

t
− c ≤ v(x) + L

t
.

Sending t to ∞ we obtain the result.
Remark: More precise result-Long time behavior.
Let u is a solution of (CP), (c, v) is a solution of (EP). There exists a constant a ∈ R
such that

u(x , t)− (ct + v(x))→ a as t →∞

locally uniformly in RN .
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Proof of Lipschitz regumarity theorem

Proof of Theorem 1

Let δ,A,C1 > 0 and a C 2 concave and increasing function ψ : R+ → R+ with ψ(0) = 0
which is constructed as following

We consider

Mδ,A,C1 = sup
x,y∈RN

{
uλ(x)− uλ(y)−

√
δ − C1(ψ(|x − y |) + δ)(φ(x) + φ(y) + A)

}
. (9)
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Proof of Lipschitz regumarity theorem

Proof of Theorem 1(Cont.)

If Mδ,A,C1 ≤ 0 for some good choice of A,C1, ψ independent of δ > 0, then we get (LR)
by letting δ → 0.

We argue by contradiction, assuming that for δ small enough Mδ,A,C1 > 0. Set

Φ(x , y) = C1(φ(x) + φ(y) + A),

ϕ(x , y) =
√
δ + (ψ(|x − y |) + δ)Φ(x , y).

Suppose that the supremum is achieved at some point (x , y) with x 6= y . Since uλ is a
viscosity solution of (SP). In view of viscosity theory in Crandall-Ishii-Lions(1992), there
exist X ,Y ∈ SN such that the following viscosity inequality holds

λ(uλ(x)− uλ(y))− (tr(σ(x)σT (x)X )− tr(σ(y)σT (y)Y )) + αx .Dxϕ− αy .(−Dyϕ)

+H(x ,Dxϕ)− H(y ,−Dyϕ)

≤ f (x)− f (y). (10)

Since Mδ,A,C1 > 0 and using the assumptions (4), (5), (6) and (7) to estimate for all the
different terms, inequality (10) becomes
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Proof of Lipschitz regumarity theorem

Proof of Theorem 1(Cont.)

λ
√
δ − 4νψ′′(|x − y |) + αψ′(|x − y |)|x − y | ≤ (2CH + (1 + µ)Cσ)ψ′(|x − y |) (11)

+2(ψ(|x − y |) + δ) + 2CH + Cf |x − y |.

We droped Φ-terms on both sides of the above inequality to simplify of explaination.

Goal: reach a contradiction in (11).

Case 1: r := |x − y | ≤ r0. The function ψ above was chosen to be strictly concave
for small r ≤ r0, we take profit of the ellipticity of the equation ”−4νψ”(r)” in (11)
to control all the others terms.

Case 2: r := |x − y | ≥ r0. In this case, the second derivative ψ′′(r) of the increasing
concave function ψ is small and the ellipticity is not powerful enough to control the
bad terms. Instead, we use the positive term αψ′(r)r coming from the
Ornstein-Uhlenbeck operator to control everything.

Note that by using the good terms as explained in the two above cases, we can choose all
of parameters independently of λ to reach a contradiction in (11).
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Thank you for your
attention!
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