Dynamical strategic influence in a social Network

Xavier Venel (PSE, CES, University Paris 1 Panthéon-Sorbonne)

Conference MODE 2016

・ロト ・ 日 ・ ・ 日 ・ ・

3.5

1/34

1 Introduction

- A model of opinion propagation
- A one-shot game

2 A model of dynamic strategic influence

Outline of the proof.

Outline

1 Introduction

- A model of opinion propagation
- A one-shot game

2 A model of dynamic strategic influence

3 Outline of the proof.

4 Conclusion

DeGroot's model (1)

We introduce a model where an opinion is a real number in [0,1].

Definition

An opinion propagation model is described by

- a set of non-strategic agents denoted by K,
- a row-stochastic matrix M.

Example

We consider the set $K = \{a, b, c\}$ and

$$M = \begin{pmatrix} 1/3 & 1/3 & 1/3 \\ 1/2 & 1/2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

DeGroot's model (2)

Example

How does the opinion propagates:

- at stage 1, agent k has an opinion $p_1(k) \in [0,1]$,
- at stage t+1, agent k updates his opinion depending on the opinion of his neighbors at stage t:

$$p_{t+1}(k) = \sum_{l \in K} M_{kl} p_t(l).$$

Example: t=??

Example 1 с b 1/31/31/31/2 1/2а

Example: $t = \infty$

Definition

A matrix M is primitive if there exists $m \in IN$ such that every coefficient of M^m is strictly positive

Theorem (DeGroot 1974)

If M is primitive, then there is emergence of consensus in the society.

Example

For example,

- if the network is connected,
- at least one player listens to himself.

A one-shot strategic game (Grabisch et al. 2015)

Definition

A static opinion game $G = (K, M, \lambda, \mu, p_1)$ is defined by

- a set K of non-strategic agents,
- a row-stochastic matrix M,
- λ a real number representing the lobbying power of agent 1,
- μ a real number representing the lobbying power of agent 0,
- an initial vector of opinion $p_1 \in [0,1]^K$

How the game is played:

- Player 1 and player 2 chooses respectively $i \in K$ and $j \in K$,
- It induces an opinion progation model of size K+2 with matrix M(i,j) (see next slides for the formal definition).
- Let $M_{\infty}(i,j) = \lim_{n \to +\infty} M(i,j)^n$.
- The payoff of player 1 is the mean-average opinion in the society in the long run:

$$g(i,j) = \frac{1}{K} \sum_{k \in K} \left(M_{\infty}(i,j) \begin{pmatrix} 1 \\ 0 \\ p_1 \end{pmatrix} \right)_k$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

How the game is played:

- Player 1 and player 2 chooses respectively $i \in K$ and $j \in K$,
- It induces an opinion progation model of size K+2 with matrix M(i,j) (see next slides for the formal definition).
- Let $M_{\infty}(i,j) = \lim_{n \to +\infty} M(i,j)^n$.
- The payoff of player 1 is the mean-average opinion in the society in the long run:

$$g(i,j) = \frac{1}{K} \sum_{k \in K} \left(M_{\infty}(i,j) \begin{pmatrix} 1 \\ 0 \\ p_1 \end{pmatrix} \right)_k$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Introduction A one-shot game

Definition of the opinion propagation model M(i,j)

Assume agent $k \in K$ has D neighbors in M:

• if $k \neq i$ and $k \neq j$,

$$p_{t+1}(k) = (Mp_t)_k$$

• if
$$k = i$$
 and $k \neq j$,

$$p_{t+1}(k) = \frac{\delta}{D+\delta} + \frac{D}{D+\delta}(Mp_t)_k$$

• if $k \neq i$ and k = j,

$$p_{t+1}(k) = \frac{\mu}{D+\mu} (Mp_t)_k$$

• if k = i and k = j, $p_{t+1}(k) = \frac{\delta}{D + \delta + \mu} + \frac{D}{D + \delta + \mu} (Mp_t)_k$

11/34

Introduction

A one-shot game

Example of M(i,j): $\delta = 2$, $\mu = 1$

Introduction

A one-shot game

Example of M(i,j): $\delta = 2$, $\mu = 1$

Introduction A one-shot game

Results/Questions ?

Easy answer

There exists a value in mixed strategies.

Harder answers (Connected graph, Grabisch et al. 2015)

- Conditions for the existence of optimal pure strategies.
- Under the previous condition, caracterisation of the optimal strategies in terms of a centrality measure.

Outline

Introduction

- A model of opinion propagation
- A one-shot game

2 A model of dynamic strategic influence

Outline of the proof.

4 Conclusion

What if the strategic agents can change their target during the game?

- How can we model that?
- What solution concept can we use?
- Comparison with the static case (one/several connected component) ?

A stochastic model: $\Gamma = (X, I, J, q, g, p_1)$

Given (K, M, λ, μ) , we define the stochastic game by:

- the set of states is $X = [0, 1]^K$,
- the actions sets are I = K and J = K,
- the transition q:X imes I imes J o X is defined such that

$$\begin{pmatrix} 1\\ 0\\ q(p,i,j) \end{pmatrix} = M(i,j) \begin{pmatrix} 1\\ 0\\ p \end{pmatrix},$$

• the stage payoff g: Z imes I imes J
ightarrow [0,1] is defined by

$$g(p,i,j) = \frac{1}{K} \sum_{k \in K} p(k),$$

• an initial vector of opinion $p_1 \in [0,1]^K$.

<□> <@> < E> < E> = E

How the game is played:

- At stage t, player 1 and player 0 chooses respectively it ∈ K and jt ∈ K,
- A new vector of opinion p_{t+1} is defined by

$$p_{t+1}=q(p_t,i_t,j_t),$$

- player 1 receives $g(p_t, i_t, j_t)$ whereas player 0 looses it.
- both players observe the actions played

Proposition

For every $i \in I$ and $j \in J$, q is 1-Lipschitz from $(X, \|.\|_{\infty})$ to $(X, \|.\|_{\infty})$.

Different criteria of evaluation:

• Average across time :

$$\gamma_n(p_1) = I\!E_{p_1,\sigma,\tau}\left(\frac{1}{n}\sum_{t=1}^n g(p_t)\right)$$

• Discounted across time:

$$\gamma_{\lambda}(p_1) = I\!E_{p_1,\sigma,\tau}\left(\lambda\sum_{t=1}^{+\infty}(1-\lambda)^{t-1}g(p_t)\right)$$

• Fixed date:

$$\gamma_{\theta}(p_1) = I\!E_{p_1,\sigma,\tau}(p_n)$$

Generalization of the static- approach

Definition

Let v be a real number,

- Player 1 guarantees v in $\Gamma(p_1)$ if $\forall \varepsilon > 0, \exists \sigma \in \Sigma, \exists N, \forall n \ge N, \forall \tau \in T, \gamma_n(p_1, \sigma, \tau) \ge v - \varepsilon.$
- Player 2 guarantees v in $\Gamma(p_1)$ if

 $\forall \varepsilon > 0, \ \exists \tau \in T, \ \exists N, \ \forall n \geq N, \ \forall \sigma \in \Sigma, \ \gamma_n(\rho_1, \sigma, \tau) \leq v + \varepsilon.$

• v is the uniform value of the game if both players can guarantee v.

Does there exists a uniform value in this type of games?

Not trivial.

Counter example with very close assumptions by Ziliotto (2015)

<ロト < 部 ト < 目 ト く 目 ト 目 の Q () 21/34

Results

Theorem

Assume that the matrix M is primitive. Then the stochastic opinion game has a uniform value that does not depend on the original vector of opinions.

Theorem

Any stochastic opinion game has a uniform value.

Outline

Introduction

- A model of opinion propagation
- A one-shot game

2 A model of dynamic strategic influence

Outline of the proof.

4 Conclusion

Approximate by a game with a finite set of states.

Lemma

Let $S \subset K$ be a connected aperiodic component for M. There exists $\theta < 1$ and $m \in IN$ such that for all $p, p' \in X$,

 $\|q(p, i_1, j_1, ..., i_m, j_m) - q(p', i_1, j_1, ..., i_m, j_m)\|_{S,\infty} \le \theta \|p - p'\|_{S,\infty},$

 $\text{ if } i_1 \in S \text{ or } j_1 \in S \\$

- By approximating X by a finite grid there is an error of ε at every step.
- Due to the contraction, there is no accumulation of error.
 - First step: ε ,
 - Second step: $\theta \varepsilon + \varepsilon$,
 - ...

Lemma

Let $S \subset K$ be a connected aperiodic component for M. There exists $\theta < 1$ and $m \in IN$ such that for all $p, p' \in X$,

 $\|q(p, i_1, j_1, ..., i_m, j_m) - q(p', i_1, j_1, ..., i_m, j_m)\|_{\mathbf{S},\infty} \le \theta \|p - p'\|_{\mathbf{S},\infty},$

$\text{ if } i_1 \in S \text{ or } j_1 \in S \\$

- By approximating X by a finite grid there is an error of ε at every step.
- Due to the contraction, there is no accumulation of error.
 - First step: ε ,
 - Second step: $\theta \varepsilon + \varepsilon$,
 - ...

Intuition behind the Lemma

Need to regroup actions by blocks to obtain a contraction

With different ergodic class:

What are the differents cases possible?

<ロト < 部ト < 言ト < 言ト 言 の Q () 28/34

With different ergodic class:

Contraction

<ロト < 部ト < 言ト < 言ト 言 のへで 28/34

With different ergodic class:

Only a contraction on the left part,

With different ergodic class:

Only a contraction on the left part, but the right part converges.

Ideas on how to prove the result?

- Let (i,j) ∈ I × J, the state K of non-strategic agents is split into 2 sets:
 - states outside of the influence induced by (i,j), convergence,
 - states which are going to be influenced through some path.

Ideas on how to prove the result?

- Let (i,j) ∈ I × J, the state K of non-strategic agents is split into 2 sets:
 - states outside of the influence induced by (i,j), convergence,
 - states which are going to be influenced through some path, θ -contraction on the subspace.

Block of fixed size is not sufficient

Let $m \in I\!N$ be a fixed length, $\tau = c^m$ and $\sigma = a^{m-1}e$:

Block of fixed size is not sufficient

Let $m \in I\!N$ be a fixed length, $\tau = c^m$ and $\sigma = a^{m-1}e$:

On the right-hand side, it is neither contracting nor converging.

Solution

Blocks of varying length: reset the timer each time a player target a new ergodic class.

Outline

Introduction

- A model of opinion propagation
- A one-shot game

2 A model of dynamic strategic influence

Outline of the proof.

Conclusions :

- Existence of the uniform value.
- Some stronger results for the aperiodic ergodic case.

Work in progress:

- What can we say if we consider a general model where M(i,j) can be any row-stochastic model?
- Do strategic agent need to change target ? Maybe optimal strategies are simple.
- Characterization of the value (direct approach).

Further research:

- What happens if the strategic agents are not observing the actions played?
- Other modelisation of the opinion propagation.

Thanks

< □ > < 母 > < 臣 > < 臣 > 王 少へで 34/34