A characterization of the sets of equilibrium payoffs of finite games

G.Vigeral (with Y. Viossat)
CEREMADE Universite Paris Dauphine

23 Mars 2016, SMAI MODE 2016

Table of contents

(9) Introduction
(2) Proof of the main proposition in an example
(3) Consequences
4. Conclusion

Table of contents

(2) Proof of the main proposition in an example
(3) Consequences
(4) Conclusion

Sets of equilibrium payoffs of finite games

What is known about the set $E \subset \mathbb{R}^{N}$ of (mixed) equilibrium payoffs of some (one-shot) finite game with N players ?

- It is nonempty
- It is compact
- It is semialgebraic : finite union and intersection of sets each of the form $\left\{e \in \mathbb{R}^{N}, P\left(e_{1}, \cdots, e_{N}\right)<0\right\}$ or $\left\{e \in \mathbb{R}^{N}, P\left(e_{1}, \cdots, e_{N}\right) \leq 0\right\}$.
- "Generically" it is finite and with odd cardinality.

Main problem

Answer to the question : $E \subset \mathbb{R}^{N}$ is the set of the equilibrium payoffs of some finite game with N players iff ...

- $N=1$: iff E is a singleton.
- $N=2$: iff E is the (nonempty) finite union of sets of the form $[a, b] \times[c, d]$ (Lehrer Solan Viossat '11)
What happens when $N \geq 3$?

Related literature

"Characterization" of sets of equilibria of finite games:

- Datta '03 : any real algebraic variety is isomorphic to the set of completely mixed equilibrium of some 3 player game, and to the set of completely mixed equilibrium of some M player binary game.
- Balkenborg-Vermeulen '14 : any nonempty connected compact semi-algebraic set is homeomorphic to one connected component of the set of equilibria of binary common interest game with payoffs 0 or 1.
- Levy '15, Viossat-V '15 : any nonempty compact semi-algebraic set is the projection of the set of equilibria of some game with M additional binary players.
- Levy '15 : any nonempty compact semi-algebraic set is the projection of the set of equilibria of some game with 3 additional nonbinary players.

Answer to our problem

Proposition

If $N \geq 3, E \subset \mathbb{R}^{N}$ is the set of equilibrium payoffs of some finite N-player game iff E is nonempty compact and semialgebraic.

Only the "if" part has to be proven.

Main result

We claim that this proposition is an easy consequence of the following result on equilibria:

Proposition

Let $N \geq 3$, and $E \subset\left[0,1\left[{ }^{N}\right.\right.$ be a nonempty compact semi algebraic set. Then there exists an N-player game Γ, and a particular action X_{*}^{i} for each player i, such that a) There exists an equilibrium which gives a probability e_{i} to X_{*}^{i} for every i iff $e=\left(e_{1}, \cdots, e_{n}\right) \in E$
b) All equilibria of Γ have a payoff 0 .

Proof of the claim

Assume E is non empty compact semi algebraic and $E \subset\left[0,1\left[^{N}\right.\right.$, and consider the game Γ of the previous proposition. Let Γ^{\prime} be defined from Γ by adding 1 to the payoff of each player i iff player $i-1$ plays X_{*}^{i-1}.

- Γ^{\prime} and Γ have the same set of equilibria
- Because of properties a) and b), the set of equilibrium payoffs of Γ^{\prime} is $\left\{\left(e_{N}, e_{1}, \cdots, e_{N-1}\right) \mid\left(e_{1}, \cdots, e_{N}\right) \in E\right\}$
- One just has to relabel the players.

To deal with the case where $E \not \subset\left[0,1\left[{ }^{N}\right.\right.$ one just has to apply affine transformations to the payoffs.

Table of contents

(1) Introduction

(2) Proof of the main proposition in an example
(3) Consequences
4. Conclusion

Notations

- We assume $N=3$ and

$$
E=\left\{\left(e_{1}\right)^{2}+\left(e_{2}\right)^{2}+\left(e_{3}\right)^{2}+e_{1} e_{2}+e_{1} e_{3}+e_{2} e_{3} \leq \frac{1}{2}\right\} \cap \mathbb{R}_{+}^{3} .
$$

- Actions will be denoted by uppercase (e.g. X_{*}^{i}) and probabilities by the corresponding lowercase (e.g. x_{*}^{i}).
- Payoff of an action of Player i will be given as "multiaffine" maps of the x^{j} for $j \neq i$ for example $g^{1}\left(X_{*}^{1}\right)=x_{*}^{2}+2 x_{*}^{2} x_{*}^{3}$.

Set of actions

Each player i has two family of actions:

- 11 Actions denoted with letter $X: X_{*}^{i}, X_{0}^{i}$, and $X_{j, k, l}^{i}$ for $1 \leq j+k+l \leq 2$. Called "unknowns". Give a payoff 0.
- Actions denoted with letter Y. Called "constraints".

We call an equilibrium nice if for each player all Y strategies are played with zero probability. Any nice equilibrium has payoff 0 .

First part of the construction : nice equilibria

We will construct our game such that $e \in E$ iff there is a nice equilibrium with $x_{*}^{i}=e^{i}$ for all i. Idea : in a nice equilibria, all strategies in Y are played with zero probability. If their payoff are defined as functions of the x^{i}, they will give some inequality constraints. We construct these constraints ensuring that $\left(x_{*}^{1}, x_{*}^{2}, x_{*}^{3}\right) \in E$.
Fix ε small enough ($1 / 100$ is ok).

The initialization constraints

Role : to ensure that at nice equilibria $x_{j, k, l}^{i}=\varepsilon\left(x_{*}^{1}\right)^{j}\left(x_{*}^{2}\right)^{k}\left(x_{*}^{3}\right)^{l}$ for $j+k+l=1$.
8 strategies for player 1 with payoffs

- $\pm\left(x_{0,1,0}^{2}-\boldsymbol{\varepsilon} x_{*}^{2}\right)$
- $\pm\left(x_{0,1,0}^{3}-\varepsilon x_{*}^{2}\right)$
- $\pm\left(x_{0,0,1}^{2}-\varepsilon x_{*}^{3}\right)$
- $\pm\left(x_{0,0,1}^{3}-\varepsilon x_{*}^{3}\right)$

Similar strategies for player 2 and 3.

The induction constraints

Role : to ensure that at nice equilibria $x_{j, k, l}^{i}=\varepsilon\left(x_{*}^{1}\right)^{j}\left(x_{*}^{2}\right)^{k}\left(x_{*}^{3}\right)^{l}$ for $j+k+l=2$.
For example add strategies of player i with payoff

- $\pm\left(\varepsilon x_{2,0,0}^{i-1}-x_{1,0,0}^{i-1} x_{1,0,0}^{i+1}\right)$, ensuring that $x_{2,0,0}^{i-1}=\varepsilon\left(x_{*}^{1}\right)^{2}$,
- $\pm\left(\varepsilon x_{1,1,0}^{i-1}-x_{1,0,0}^{i-1} x_{0,1,0}^{i+1}\right)$, ensuring that $x_{1,1,0}^{i-1}=\varepsilon x_{*}^{1} x_{*}^{2}$,
- and so on.

The semialgebraic constraints

Role : to ensure that at nice equilibria $\left(x_{*}^{1}, x_{*}^{2}, x_{*}^{3}\right) \in E$.
For each player i add one strategy with payoff
$x_{2,0,0}^{i-1}+x_{0,2,0}^{i-1}+x_{0,0,2}^{i-1}+x_{1,1,0}^{i-1}+x_{1,0,1}^{i-1}+x_{0,1,1}^{i-1}-\frac{\varepsilon}{2}$
Because of the previous constraints, at equilibrium the payoff will be
$\left.\varepsilon\left(\left(x_{*}^{1}\right)^{2}+\left(x_{*}^{2}\right)^{2}+\left(x_{*}^{3}\right)^{2}+x_{*}^{1} x_{*}^{2}+x_{*}^{1} x_{*}^{3}+x_{*}^{2} x_{*}^{3}-\frac{1}{2}\right)\right)$

Nice equilibria

The construction ensures that in any nice equilibria, $x_{*} \in E$. Now if $x_{*} \in E$,

- Fix $x_{j, k, l}^{i}=\varepsilon\left(x_{*}^{1}\right)^{j}\left(x_{*}^{2}\right)^{k}\left(x_{*}^{3}\right)^{l}$ for $j+k+l \geq 1$
- Fix $x_{0}^{i}=1-x_{*}^{i}-\sum x_{j, k, l}^{i}$.
- If ε is small enough $x_{0}^{i} \geq 0$ and the profile is well defined
- All constraints are nonprofitable by construction.

Hence there is a nice equilibrium with $x_{*} \in E$.

Second part of the construction : other equilibria

They may be a lot of other equilibria...
To get rid of them, add another constraint Y_{*}^{i} with payoff $K\left(1-x_{0}^{i-1}-x_{*}^{i-1}-\sum x_{j, k, l}^{i-1}\right)$ for K large.

- This payoff is 0 in any nice equilibrium, so this does not change the set of nice equilibria.
- If an equilibria is not nice, then $y_{*}^{i}=1$ for all i.
- Hence in the unique not nice equilibrium, $x_{*}=(0,0,0) \in E$
- Payoff of this equilibrium is K and not 0 , but that can be fixed by adding $-\mathrm{Ky}_{*}^{i-1}$ to the payoff of each action of each Player i.

General case

In general we have to

- Deal with $N \geq 3$: easy fix
- Deal with arbitrary polynomials : easy fix
- Deal with intersections : easy fix
- Deal with unions : more difficult
- Deal with second part in general (when $0 \notin E$) : more difficult

Table of contents

(1) Introduction

(2) Proof of the main proposition in an example

(3) Consequences
4. Conclusion

Reminder : Hilbert tenth problem

- Problem : "Find an algorithm to determine whether a given multivariate polynomial $P \in \mathbb{Z}\left[X_{1}, \cdots X_{N}\right]$ has a zero in \mathbb{Z}^{N}.
- MRDP Theorem, Matiyasevich '70 (using previous works by Robinson Davis and Putnam) : this is impossible, there is no such algorithm. "Undecidability of Hilbert tenth problem".
- Still undecidable even if one fix both N and the degree d of P (provided they are larger than explicit bounds).
- Problem is open if one replace "has a zero in \mathbb{Z}^{N} " by "has a zero in $\mathbb{Q}^{N "}$ (Hilbert tenth problem on \mathbb{Q}).

Reminder : Hilbert tenth problem

- Problem : "Find an algorithm to determine whether a given multivariate polynomial $P \in \mathbb{Z}\left[X_{1}, \cdots X_{N}\right]$ has a zero in \mathbb{Z}^{N}.
- MRDP Theorem, Matiyasevich '70 (using previous works by Robinson Davis and Putnam) : this is impossible, there is no such algorithm. "Undecidability of Hilbert tenth problem".
- Still undecidable even if one fix both N and the degree d of P (provided they are larger than explicit bounds).
- Problem is open if one replace "has a zero in $\mathbb{Z}^{N "}$ by "has a zero in $\mathbb{Q}^{N "}($ Hilbert tenth problem on $\mathbb{Q})$.

Reminder : Hilbert tenth problem

- Problem : "Find an algorithm to determine whether a given multivariate polynomial $P \in \mathbb{Z}\left[X_{1}, \cdots X_{N}\right]$ has a zero in \mathbb{Z}^{N}.
- MRDP Theorem, Matiyasevich '70 (using previous works by Robinson Davis and Putnam) : this is impossible, there is no such algorithm. "Undecidability of Hilbert tenth problem".
- Still undecidable even if one fix both N and the degree d of P (provided they are larger than explicit bounds).
- Problem is open if one replace "has a zero in $\mathbb{Z}^{N "}$ by "has a zero in $\mathbb{Q}^{N "}$ (Hilbert tenth problem on \mathbb{Q}).

Consequences

Because of our construction, it is impossible to find an algorithm that, given a game with integer pure payoffs, answer to any of these questions:

- Is there an equilibrium in which the payoff of each player is the inverse of an integer?
- Is there an equilibrium in which the probability that each player plays its first strategy is the inverse of an integer ? Same impossibility even if one fix both the number of players
and of actions (provided they are greater than some explicit
bounds).
Other consequence : there exists an explicit game such that
the answer to any of the two questions is yes iff Riemann's
hypothesis is false.

Consequences

Because of our construction, it is impossible to find an algorithm that, given a game with integer pure payoffs, answer to any of these questions:

- Is there an equilibrium in which the payoff of each player is the inverse of an integer?
- Is there an equilibrium in which the probability that each player plays its first strategy is the inverse of an integer ? Same impossibility even if one fix both the number of players and of actions (provided they are greater than some explicit bounds).

> Other consequence : there exists an explicit game such that the answer to any of the two questions is yes iff Riemann's hypothesis is false.

Consequences

Because of our construction, it is impossible to find an algorithm that, given a game with integer pure payoffs, answer to any of these questions:

- Is there an equilibrium in which the payoff of each player is the inverse of an integer?
- Is there an equilibrium in which the probability that each player plays its first strategy is the inverse of an integer ? Same impossibility even if one fix both the number of players and of actions (provided they are greater than some explicit bounds).
Other consequence : there exists an explicit game such that the answer to any of the two questions is yes iff Riemann's hypothesis is false.

Consequences

If Hilbert tenth problem on \mathbb{Q} is also undecidable, then it is impossible to find an algorithm that, given a game with integer payoffs answer to any of these questions:

- Is there an equilibrium in which the payoff of each player is a rational ?
- Is there an equilibrium in which the probability that each player plays its first strategy is a rational?
- Is there an equilibrium in which all players play all strategies with some rational probability?

Table of contents

(1) Introduction

(2) Proof of the main proposition in an example
(3) Consequences
4. Conclusion

More questions

- Can we do such a construction with "robust" equilibria (without using weakly dominated strategies for example)?
- Can we use this to construct stochastic games with weird behavior?
- What if we add some structure (games with perfect information for example)?
- What about the set of payoffs of correlated equilibria ?

Thank you for your attention

Merci!

