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Introduction

Sets of equilibrium payoffs of finite games

What is known about the set E ⊂ RN of (mixed) equilibrium
payoffs of some (one-shot) finite game with N players ?

It is nonempty
It is compact
It is semialgebraic : finite union and intersection of sets
each of the form {e ∈ RN ,P(e1, · · · ,eN)< 0} or
{e ∈ RN ,P(e1, · · · ,eN)≤ 0}.
"Generically" it is finite and with odd cardinality.
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Introduction

Main problem

Answer to the question : E ⊂ RN is the set of the equilibrium
payoffs of some finite game with N players iff ...

N = 1 : iff E is a singleton.
N = 2 : iff E is the (nonempty) finite union of sets of the
form [a,b]× [c,d] (Lehrer Solan Viossat ’11)

What happens when N ≥ 3 ?
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Introduction

Related literature

"Characterization" of sets of equilibria of finite games:
Datta ’03 : any real algebraic variety is isomorphic to the
set of completely mixed equilibrium of some 3 player game,
and to the set of completely mixed equilibrium of some M
player binary game.
Balkenborg-Vermeulen ’14 : any nonempty connected
compact semi-algebraic set is homeomorphic to one
connected component of the set of equilibria of binary
common interest game with payoffs 0 or 1.
Levy ’15, Viossat-V ’15 : any nonempty compact
semi-algebraic set is the projection of the set of equilibria
of some game with M additional binary players.
Levy ’15 : any nonempty compact semi-algebraic set is the
projection of the set of equilibria of some game with 3
additional nonbinary players.
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Introduction

Answer to our problem

Proposition

If N ≥ 3, E ⊂ RN is the set of equilibrium payoffs of some finite
N-player game iff E is nonempty compact and semialgebraic.

Only the "if" part has to be proven.
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Introduction

Main result

We claim that this proposition is an easy consequence of the
following result on equilibria:

Proposition

Let N ≥ 3, and E ⊂ [0,1[N be a nonempty compact semi
algebraic set. Then there exists an N-player game Γ, and a
particular action Xi

∗ for each player i, such that
a) There exists an equilibrium which gives a probability ei to Xi

∗
for every i iff e = (e1, · · · ,en) ∈ E
b) All equilibria of Γ have a payoff 0.
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Introduction

Proof of the claim

Assume E is non empty compact semi algebraic and E ⊂ [0,1[N ,
and consider the game Γ of the previous proposition.
Let Γ′ be defined from Γ by adding 1 to the payoff of each
player i iff player i−1 plays Xi−1

∗ .

Γ′ and Γ have the same set of equilibria
Because of properties a) and b), the set of equilibrium
payoffs of Γ′ is {(eN ,e1, · · · ,eN−1)|(e1, · · · ,eN) ∈ E}
One just has to relabel the players.

To deal with the case where E 6⊂ [0,1[N one just has to apply
affine transformations to the payoffs.
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Proof of the main proposition in an example

Notations

We assume N = 3 and
E = {(e1)

2 +(e2)
2 +(e3)

2 + e1e2 + e1e3 + e2e3 ≤ 1
2}∩R

3
+.

Actions will be denoted by uppercase (e.g. Xi
∗) and

probabilities by the corresponding lowercase (e.g. xi
∗).

Payoff of an action of Player i will be given as "multiaffine"
maps of the xj for j 6= i for example g1(X1

∗) = x2
∗+2x2

∗x
3
∗.
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Proof of the main proposition in an example

Set of actions

Each player i has two family of actions:
11 Actions denoted with letter X : Xi

∗, Xi
0, and Xi

j,k,l for
1≤ j+ k+ l≤ 2. Called "unknowns". Give a payoff 0.
Actions denoted with letter Y. Called "constraints".

We call an equilibrium nice if for each player all Y strategies are
played with zero probability. Any nice equilibrium has payoff 0.
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Proof of the main proposition in an example

First part of the construction : nice equilibria

We will construct our game such that e ∈ E iff there is a nice
equilibrium with xi

∗ = ei for all i.
Idea : in a nice equilibria, all strategies in Y are played with zero
probability. If their payoff are defined as functions of the xi, they
will give some inequality constraints. We construct these
constraints ensuring that (x1

∗,x
2
∗,x

3
∗) ∈ E.

Fix ε small enough (1/100 is ok).
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Proof of the main proposition in an example

The initialization constraints

Role : to ensure that at nice equilibria xi
j,k,l = ε(x1

∗)
j(x2
∗)

k(x3
∗)

l for
j+ k+ l = 1.
8 strategies for player 1 with payoffs

±(x2
0,1,0− εx2

∗)

±(x3
0,1,0− εx2

∗)

±(x2
0,0,1− εx3

∗)

±(x3
0,0,1− εx3

∗)

Similar strategies for player 2 and 3.
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Proof of the main proposition in an example

The induction constraints

Role : to ensure that at nice equilibria xi
j,k,l = ε(x1

∗)
j(x2
∗)

k(x3
∗)

l for
j+ k+ l = 2.
For example add strategies of player i with payoff

±(εxi−1
2,0,0− xi−1

1,0,0xi+1
1,0,0), ensuring that xi−1

2,0,0 = ε(x1
∗)

2,

±(εxi−1
1,1,0− xi−1

1,0,0xi+1
0,1,0), ensuring that xi−1

1,1,0 = εx1
∗x

2
∗,

and so on.
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Proof of the main proposition in an example

The semialgebraic constraints

Role : to ensure that at nice equilibria (x1
∗,x

2
∗,x

3
∗) ∈ E.

For each player i add one strategy with payoff
xi−1

2,0,0 + xi−1
0,2,0 + xi−1

0,0,2 + xi−1
1,1,0 + xi−1

1,0,1 + xi−1
0,1,1−

ε

2
Because of the previous constraints, at equilibrium the payoff
will be
ε
(
(x1
∗)

2 +(x2
∗)

2 +(x3
∗)

2 + x1
∗x

2
∗+ x1

∗x
3
∗+ x2

∗x
3
∗− 1

2)
)
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Proof of the main proposition in an example

Nice equilibria

The construction ensures that in any nice equilibria, x∗ ∈ E.
Now if x∗ ∈ E,

Fix xi
j,k,l = ε(x1

∗)
j(x2
∗)

k(x3
∗)

l for j+ k+ l≥ 1

Fix xi
0 = 1− xi

∗−∑xi
j,k,l.

If ε is small enough xi
0 ≥ 0 and the profile is well defined

All constraints are nonprofitable by construction.
Hence there is a nice equilibrium with x∗ ∈ E.
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Proof of the main proposition in an example

Second part of the construction : other equilibria

They may be a lot of other equilibria...
To get rid of them, add another constraint Y i

∗ with payoff
K(1− xi−1

0 − xi−1
∗ −∑xi−1

j,k,l) for K large.

This payoff is 0 in any nice equilibrium, so this does not
change the set of nice equilibria.
If an equilibria is not nice, then yi

∗ = 1 for all i.
Hence in the unique not nice equilibrium, x∗ = (0,0,0) ∈ E

Payoff of this equilibrium is K and not 0, but that can be
fixed by adding −Kyi−1

∗ to the payoff of each action of each
Player i.
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Proof of the main proposition in an example

General case

In general we have to

Deal with N ≥ 3 : easy fix
Deal with arbitrary polynomials : easy fix
Deal with intersections : easy fix
Deal with unions : more difficult
Deal with second part in general (when 0 /∈ E) : more
difficult
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Consequences

Reminder : Hilbert tenth problem

Problem : "Find an algorithm to determine whether a given
multivariate polynomial P ∈ Z[X1, · · ·XN ] has a zero in ZN .
MRDP Theorem, Matiyasevich ’70 (using previous works
by Robinson Davis and Putnam) : this is impossible, there
is no such algorithm. "Undecidability of Hilbert tenth
problem".
Still undecidable even if one fix both N and the degree d of
P (provided they are larger than explicit bounds).
Problem is open if one replace "has a zero in ZN" by "has a
zero in QN" (Hilbert tenth problem on Q).
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Consequences

Consequences

Because of our construction, it is impossible to find an
algorithm that, given a game with integer pure payoffs, answer
to any of these questions:

Is there an equilibrium in which the payoff of each player is
the inverse of an integer ?
Is there an equilibrium in which the probability that each
player plays its first strategy is the inverse of an integer ?

Same impossibility even if one fix both the number of players
and of actions (provided they are greater than some explicit
bounds).
Other consequence : there exists an explicit game such that
the answer to any of the two questions is yes iff Riemann’s
hypothesis is false.
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Consequences

Consequences

If Hilbert tenth problem on Q is also undecidable, then it is
impossible to find an algorithm that, given a game with integer
payoffs answer to any of these questions:

Is there an equilibrium in which the payoff of each player is
a rational ?
Is there an equilibrium in which the probability that each
player plays its first strategy is a rational ?
Is there an equilibrium in which all players play all
strategies with some rational probability ?
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Conclusion

More questions

Can we do such a construction with "robust" equilibria
(without using weakly dominated strategies for example)?
Can we use this to construct stochastic games with weird
behavior ?
What if we add some structure (games with perfect
information for example) ?
What about the set of payoffs of correlated equilibria ?
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Conclusion

Thank you for your attention

Merci !
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