Stochastic homogenization of Hamilton-Jacobi equations: a counterexample.

Bruno Ziliotto

CEREMADE, Paris Dauphine University

March 23rd, 2016

Introduction and main result

- 2 The discrete-time problem
- 3 From discrete-time to continuous-time

Stochastic Hamilton-Jacobi equation

Let $\epsilon > 0$. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and for $\omega \in \Omega$ consider the system

 $\begin{cases} \partial_t u_{\epsilon}(x,t,\omega) + H(Du_{\epsilon}(x,t,\omega),\frac{x}{\epsilon},\omega) = 0 & \text{in } \mathbb{R}^n \times (0,+\infty) \\ u_{\epsilon}(x,0,\omega) = 0 & \text{in } \mathbb{R}^n \end{cases}$

- *H* is continuous in (*p*, *x*) and Lipschitz in *p*, and lim_{||p||→+∞} *H*(*p*, *x*, ω) = +∞ (coerciveness).
- The law of ω → H(.,ω) is assumed to be invariant by translation and ergodic.

$$\forall (x, t, \omega) \quad u_{\epsilon}(x, t, \omega) = \epsilon u_1\left(\frac{x}{\epsilon}, \frac{t}{\epsilon}, \omega\right).$$

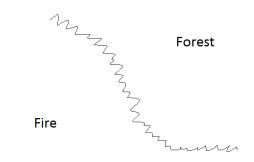
The system *homogenizes* if there exists \overline{H} such that u_{ϵ} converges a.s. and uniformly in (x, t) to the solution of

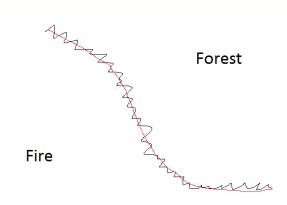
$$\begin{cases} \partial_t u(x,t) + \bar{H}(Du(x,t)) = 0 & \text{in } \mathbb{R}^n \times (0,+\infty) \\ u(x,0) = 0 & \text{in } \mathbb{R}^n \end{cases}$$

Example 1 : Fire front propagation

$$\forall (x,p) \in \mathbb{R}^2 \times \mathbb{R}^2 \quad H(x,p,\omega) := |p| h\left(x,\frac{p}{|p|},\omega\right)$$

The fire front at time *t* corresponds to the level set $\{x \in \mathbb{R}^2 \mid u(x, t, \omega) = 0\}.$





Example 2 : Zero-sum stochastic differential games

- $A, B \subset \mathbb{R}^n, c : \mathbb{R}^n \times A \times B \times \Omega \to \mathbb{R},$ $f : \mathbb{R}^n \times A \times B \times \Omega \to \mathbb{R}^n.$
- Dynamics

$$\dot{x}(t) = f(x(t), a(t), b(t), \omega),$$

such that Player 1 controls the state (coerciveness)

Payoff

$$\gamma_{\mathcal{T}}(\boldsymbol{a}, \boldsymbol{b}, \omega) := rac{1}{\mathcal{T}} \int_{0}^{\mathcal{T}} \boldsymbol{c}(\boldsymbol{x}(t), \boldsymbol{a}(t), \boldsymbol{b}(t), \omega) dt.$$

Let $H(x, p, \omega) := \max_{a \in A} \min_{b \in B} \{-c(x, a, b, \omega) - p \cdot f(x, a, b, \omega)\}$

 $u^{\epsilon}(0,1,\omega)$ is the value of the game with duration $1/\epsilon$ and initial state 0.

Stochastic homogenization has been proven in the following cases :

- When *H* is periodic (consequence of Lions, Papanicolaou and Varadhan 1986)
- When *H* is convex in *p* (Souganidis 1999)
- When the law of *H* has finite range (Armstrong and Cardaliaguet 2015)

Question (Lions and Souganidis 2005, 2010, Kosygina 2007, Armstrong and Cardaliaguet 2015...) :

What happens in the general case?

Theorem (Z.15)

There exists a stochastic Hamilton-Jacobi equation in \mathbb{R}^2 which does not homogenize.

This equation comes from a zero-sum differential game, which itself is associated with a discrete-time zero-sum repeated game with state space \mathbb{Z}^2 .

Introduction and main result

2 The discrete-time problem

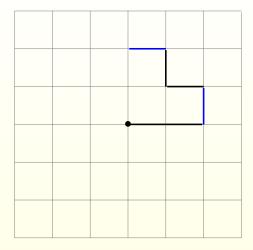
3 From discrete-time to continuous-time

- Probability space (Ω, F, P),
- State space Z²,
- Cost function $c(., \omega)$ on the edges of \mathbb{Z}^2 (ergodic and \mathbb{Z}^2 -invariant).

- The initial state is (0,0) and ω is publicly announced,
- Players play in turn,
- Player 1 moves the state along two edges, then Player 2 moves the state along one edge, etc.
- Player 1 (resp 2) minimizes (resp. maximizes)

$$\frac{1}{n}\sum_{m=1}^{n}c(e_{m},\omega).$$

Jeu en 6 étapes



Denote by $v_n(\omega)$ the value of the *n*-stage game.

Theorem (Z. 15)

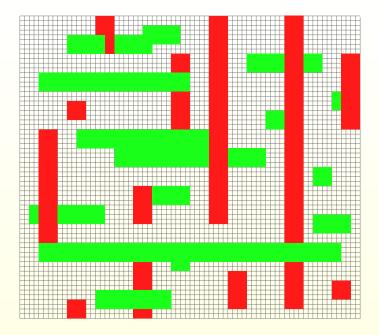
There exists $(\Omega, \mathcal{F}, \mathbb{P})$ and a cost function *c* such that \mathbb{P} -almost surely (v_n) does not converge.

This example can be adapted into a zero-sum differential game, which Hamilton-Jacobi equation does not homogenize.

Structure of c

- Put a cost 2 (huge cost) on the horizontal edges
- Let T_k := 2^k (k ≥ 1). Fill the space with two kinds of blocks :

- rectangles of size (10 · *T_k*) × 4, *k* ≥ 1, with cheap vertical edges (cost 1), called "green rectangles",
- rectangles of size 4 × (10 · *T_k*), *k* ≥ 1, with expensive vertical edges (cost 2), called "red rectangles".



Idea of the example

Consider $\Gamma_{T_k}(\omega)$ ($k \ge 1$) :

 If a green rectangle of size (10T_k) × 4 is close to the origin : Player 1 forces the state to go to the green rectangle, and stay there at a cheap cost.

• If a red rectangle of size $4 \times (10T_k)$ is close to the origin : Player 2 plays horizontally towards the red rectangle, and forces Player 1 to play horizontally. For k = 1 to $+\infty$:

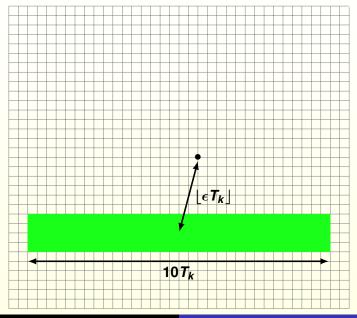
• For each $(I, m) \in \mathbb{Z}^2$, draw independently $X_{I,m}^k \sim B(2^{-k})$.

For each (*I*, *m*) ∈ Z² such that X^k_(*I*,*m*) = 1, create a green rectangle of size (10*T_k*) × 4, centered on (*I*, *m*) : for each vertical edge *e* that lies in the rectangle, set c(*e*, ω) := 1.

For k = 1 to $+\infty$:

- For each $(I, m) \in \mathbb{Z}^2$, draw independently $Y_{(I,m)}^k \sim B(2^{-k})$.
- For each (*I*, *m*) ∈ Z² such that Y^k_(*I*,*m*) = 1, create a red rectangle of size 4 × 10*T_k*, that is, for each vertical edge *e* that lies in the rectangle, proceed as follows :
 - If *e* lies in a green rectangle of size (10*T_{k'}*) × 4, *k'* ≥ *k*, do nothing.
 - Otherwise, set $c(e, \omega) := 2$.

The good scenario for Player 1



Fix $\epsilon > 0$. For $k \ge 1$, let A_k be the event

"There exists a complete green rectangle of size $(10 \cdot T_k) \times 4$ at a distance smaller or equal to $\lfloor \epsilon T_k \rfloor$ from the origin".

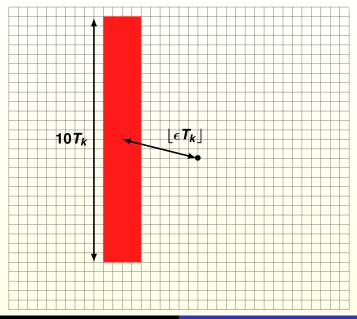
- $\liminf_{k \to +\infty} \mathbb{P}(A_k) > 0$
- \mathbb{P} -a.s., there exists $(n_k(\omega))_{k\geq 1}$ such that A_{n_k} is realized.

•
$$v_{n_k}(\omega) \leq 4/3 + \epsilon$$

٠

$$\liminf_{n\to+\infty} v_n \leq \frac{4}{3} \quad \mathbb{P}-a.s.$$

The bad scenario for Player 1



For $k \ge 1$, let B_k be the event

"There exists a complete red rectangle of size $4 \times (10T_k)$ at a distance smaller or equal to $\lfloor \epsilon T_k \rfloor$ from the origin."

- $\liminf_{k \to +\infty} \mathbb{P}(B_k) > 0$
- \mathbb{P} -a.s., there exists $(n'_k(\omega))_{k\geq 1}$ such that $B_{n'_k}$ is realized.

•
$$V_{n'_k}(\omega) \geq 5/3 - \epsilon$$

٠

$$\limsup_{n\to+\infty} v_n \geq 5/3 \quad \mathbb{P}-a.s.$$

2 The discrete-time problem

From discrete-time to continuous-time

A zero-sum differential game

- State space \mathbb{R}^2 , control sets $A = B = [-1, 1]^2$.
- It is easy to smooth the discrete cost functions c(., ω) into 1-Lipschitz cost functions c̃(., ω) : ℝ² → [1, 2].
- Let $I : \mathbb{R}^2 \times [-1, 1]^2 \rightarrow [1, 2]$ defined by

 $\forall (x, a, \omega) \in \mathbb{R}^2 \times [-1, 1]^2 \times \Omega, \quad I(x, a, \omega) := \widetilde{c}(x, \omega) + 2|a_1|.$

• Define $H : \mathbb{R}^2 \times \mathbb{R}^2 \times \Omega$ by $\forall (p, x, \omega) \in \mathbb{R}^2 \times \mathbb{R}^2 \times \Omega$

$$H(p, x, \omega) := \max_{a \in [-1, 1]^2} \min_{b \in [-1, 1]^2} \{-I(x, a, \omega) - p \cdot (2a + b)\}.$$

Theorem (Z.15)

$\liminf_{\epsilon \to 0} u_{\epsilon}(0, 1, \omega) \neq \limsup_{\epsilon \to 0} u_{\epsilon}(0, 1, \omega) \quad \mathbb{P}\text{-a.s.}$

Is it possible to use the discrete-time problem to prove the following positive result for the PDE problem :

If the law of the Hamiltonian does not correlate distant regions of space, then the HJ equation homogenizes.

- Finding an optimal strategy for Player 1 in the discrete-time problem can help building a supersolution of the Hamilton-Jacobi equation of the zero-sum differential game.
- Under mild assumptions, any Hamilton-Jacobi equation can be represented by a zero-sum differential game (Evans and Souganidis 1984).

Thank you for your attention !